scholarly journals Increasing the share of RES in Polish district heating systems using power-to-heat technology

2019 ◽  
Vol 116 ◽  
pp. 00042
Author(s):  
Małgorzata Kwestarz ◽  
Maciej Chaczykowski

The power systems in European Union operate under energy policies where the greenhouse gases reduction, the increase of the share of renewable energy sources (RES) and the improvements in energy efficiency are the main objectives. Polish energy sector is currently based on inefficient usage of coal and must be transformed according to the requirements of EU energy and climate policy. A policy framework for climate and energy in the period from 2020 to 2030 established the target of 27% of share of RES in energy consumption. With the continuing increase in the use of RES, it is likely that more and more generation will have to be curtailed to maintain the stability of the power system which was not originally designed to integrate renewable generation. In this context, the conversion of renewable electricity to heat in connection with its storage in district heating systems, known as Power-to-Heat (PtH) can be considered as a viable option in increasing the share of RES and facilitating the stability of the power system. In this paper an attempt is made to estimate the potential of PtH technology for Poland up to 2030, including the high RES share scenario for the energy mix development.

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3310 ◽  
Author(s):  
Ignacio Blanco ◽  
Daniela Guericke ◽  
Anders Andersen ◽  
Henrik Madsen

In countries with an extended use of district heating (DH), the integrated operation of DH and power systems can increase the flexibility of the power system, achieving a higher integration of renewable energy sources (RES). DH operators can not only provide flexibility to the power system by acting on the electricity market, but also profit from the situation to lower the overall system cost. However, the operational planning and bidding includes several uncertain components at the time of planning: electricity prices as well as heat and power production from RES. In this publication, we propose a planning method based on stochastic programming that supports DH operators by scheduling the production and creating bids for the day-ahead and balancing electricity markets. We apply our solution approach to a real case study in Denmark and perform an extensive analysis of the production and trading behavior of the DH system. The analysis provides insights on system costs, how DH system can provide regulating power, and the impact of RES on the planning.


Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy stor- age systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic model for stability analysis. Moreover, a proper control design for the power system is a complicated issue due to its complexity and inter-connectivity. Thus, the application of decentralized control to improve the stability of a large- scale power system is inevitable, especially in distributed energy sources (DERs). This paper presents an optimal distributed hybrid control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The results show that i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; ii) the hybrid model of the battery is more user-friendly compared to the Western electricity coordinating council (WECC) model in power system analysis.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6628
Author(s):  
Chiara Magni ◽  
Alessia Arteconi ◽  
Konstantinos Kavvadias ◽  
Sylvain Quoilin

The EU aims to become the world’s first climate-neutral continent by 2050. In order to meet this target, the integration of high shares of Renewable Energy Sources (RESs) in the energy system is of primary importance. Nevertheless, the large deployment of variable renewable sources such as wind and photovoltaic power will pose important challenges in terms of power management. For this reason, increasing the system flexibility will be crucial to ensure the security of supply in future power systems. This work investigates the flexibility potential obtainable from the diffusion of Demand Response (DR) programmes applied to residential heating for different renewables penetration and power system configuration scenarios. To that end, a bottom-up model for residential heat demand and flexible electric heating systems (heat pumps and electric water heaters) is developed and directly integrated into Dispa-SET, an existing unit commitment optimal dispatch model of the power system. The integrated model is calibrated for the case of Belgium and different simulations are performed varying the penetration and type of residential heating technologies, installed renewables capacity and capacity mix. Results show that, at country level, operational cost could be reduced up to €35 million and curtailment up to 1 TWh per year with 1 million flexible electric heating systems installed. These benefits are significantly reduced when nuclear power plants (non-flexible) are replaced by gas-fired units (flexible) and grow when more renewable capacity is added. Moreover, when the number of flexible heating systems increases, a saturation effect of the flexibility is observed.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5605
Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy storage systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic models and their application in power system analyses. The control design strategy mainly depends on the system dynamics which underlines the importance of the system accurate dynamic modeling. Moreover, control design for the power system is a complicated issue due to its complexity and inter-connectivity, which makes the application of distributed control to improve the stability of a large-scale power system inevitable. This paper presents an optimal distributed control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The control strategy is applied to two dynamic models of the battery: hybrid model and Western electricity coordinating council (WECC) model. The results show that (i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; (ii) the hybrid model of the battery is more user-friendly compared to the WECC model in power system analyses.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5786
Author(s):  
Stefanos Ntomalis ◽  
Petros Iliadis ◽  
Konstantinos Atsonios ◽  
Athanasios Nesiadis ◽  
Nikos Nikolopoulos ◽  
...  

The defossilization of power generation is a prerequisite goal in order to reduce greenhouse gas emissions and transit for a sustainable economy. Achieving this goal requires increasing the penetration of renewable energy sources (RESs) such as solar and wind power. The gradual shrinking of conventional generation units in an energy map introduces new challenges to the stability of power systems as there is a considerable reduction of stored rotational energy in the synchronous generators (SGs) and the capability to control their power output, which has been taken for granted until today. Inertia and primary reserve reduction have a substantial effect on the ability of the power system to maintain its security and self-resilience during contingency events. Such issues become more evident in the case of non-interconnected islands (NII) as they have unique features associated with their small size and low inertia. The present study examines in depth the NII system of Madeira, which is composed of thermal, hydro, solid-waste, wind and solar generation units, and additional RES integration is planned for the near future. Electromagnetic transient (EMT) simulations are performed for both the current and future states of the system, including the installation of planned variable RES capacities. To alleviate the stability issues that occurred in the high-RES scenario, the introduction of a utility-scale battery energy storage system (BESS), capable of mitigating the active power imbalance due to the power system’s disturbances resultant of RES penetration, is examined. In addition, a comparison between a flywheel energy storage system (FESS) and BESS is shortly investigated. The grid has been modeled and simulated utilizing the open-source, object-oriented modeling language Modelica. The dynamic simulation results proved that battery storage is a promising technology that can be a solution for transitioning to a sustainable power system, maintaining its self-resilience under severe disturbances such as rapid load changes, the tripping of generation units and short-circuits.


2019 ◽  
Vol 85 ◽  
pp. 04006
Author(s):  
Adrian Ilie ◽  
Ion Vişa

The energy used in the built-up environment represents at least 40% of the total energy consumed, out of which, at least 60% is required for heating, cooling and domestic hot water (DHW). Within the European Union, more than 6,000 communities (i.e. over 9%) use district heating systems, the majority of which use the conversion of fossil fuels as a source of energy. This aspect, which is corroborated by the directives of the EU legislation on the use of renewable energy sources and energy performance, imposes the development of new solutions through which the existing district heating systems may be adapted to use renewable energy sources. The solar-thermal systems that are used on a large (district) scale are becoming more and more efficient from the point of view of their feasibility; however, it is almost impossible to create systems that should satisfy the thermal energy demand throughout the four seasons of the year. The hybrid solar-biomass system is becoming the applicable solution for the majority of the communities that have from this potential, since it can secure independence from the point of view of the use of thermal energy. This paper presents the design stages for the implementation of the hybrid solar-biomass systems with a view to identifying the optimal solutions for systems to be integrated into an existing district heating system. A case study (Taberei District in Odorheiu Secuiesc City), which provides a detailed description of the feasible technical solutions, is presented.


Sign in / Sign up

Export Citation Format

Share Document