scholarly journals Frequency Control of Large-Scale Interconnected Power Systems via Battery Integration: A Comparison Between the Hybrid Battery Model and WECC Model

Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy stor- age systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic model for stability analysis. Moreover, a proper control design for the power system is a complicated issue due to its complexity and inter-connectivity. Thus, the application of decentralized control to improve the stability of a large- scale power system is inevitable, especially in distributed energy sources (DERs). This paper presents an optimal distributed hybrid control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The results show that i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; ii) the hybrid model of the battery is more user-friendly compared to the Western electricity coordinating council (WECC) model in power system analysis.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5605
Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy storage systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic models and their application in power system analyses. The control design strategy mainly depends on the system dynamics which underlines the importance of the system accurate dynamic modeling. Moreover, control design for the power system is a complicated issue due to its complexity and inter-connectivity, which makes the application of distributed control to improve the stability of a large-scale power system inevitable. This paper presents an optimal distributed control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The control strategy is applied to two dynamic models of the battery: hybrid model and Western electricity coordinating council (WECC) model. The results show that (i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; (ii) the hybrid model of the battery is more user-friendly compared to the WECC model in power system analyses.


2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

2019 ◽  
Vol 7 (1) ◽  
pp. 36-44
Author(s):  
Jorge Andrés Pérez ◽  
Ellis Moisés Reyes ◽  
Tannia Karina Vindel

The ancillary services are essential in the power Systems operation, historically this services haven’t been regulated in any way in Honduras. There have been changes recently into the regulatory framework in the entire electricity sector alongside the large-scale injection of photovoltaic and wind powered centrals in the System. Considering these scenarios, the ancillary services become a necessity in terms of the operation for the power system and the stability associated with it. In this paper, we analyze the technical and economic aspects related to the frequency control, voltage control and blackstart services, we compare the services provided in different countries and how it is possible to adapt the successful cases to the Honduran power system.


Author(s):  
Takahiro Uehara ◽  
Dang Ngoc Son ◽  
Hidehito Matayoshi ◽  
Mohamed Lotfy ◽  
Tomonobu Senju ◽  
...  

AbstractIn response to mounting concerns regarding environmental problem and depletion of Energy Resources, the introduction of Renewable Energy Sources (RESs), has been advancing in recent years. The system frequency deviation is a serious problem for a RESs-integrated power system. In this paper, we propose a system frequency control method using the automated demand response (ADR) for an isolated power system with RESs. The ADR can automatically adjust the consumption power of appliances after receiving the DR signal. It is assumed that consumption power of controllable loads is automatically varied based on the electricity price information from the real-time pricing (RTP). This method improves the supply-demand balancing, and hence the system frequency control is achieved. Furthermore, the stability of controller is demonstrated by indicating the poles of the control system.


Author(s):  
Igor Razzhivin ◽  
Aleksey Suvorov ◽  
Mikhail Andreev ◽  
Alisher Askarov

Abstract The dominant trend of the modern energy is the use of generating plants based on renewable energy sources, among which the most common is a wind power plant based on doubly fed induction generator (Type 3 WT). The large-scale introduction of Type 3 WT into the modern power systems significantly changes their dynamic properties. There are problems with ensuring the basic condition of the reliability and the survivability of power systems – the stability. The study and solution of the indicated problems is possible only with the help of the mathematical modeling of a large-scale power systems which is currently being carried out with the help of widespread purely numerical software tools of calculations of modes and processes, which are characterized by various simplifications and limitations. For the properties and capabilities of software tools for studying stability issues, mathematical models of Type 3 WT, the so-called generic models, which also have simplifications and limitations, are adapted. In this article, the reliability of stability calculations of a real power system with Type 3 WT using software tools was evaluated, which allows to identify the influence of the applied simplifications and restrictions with a purely numerical approach on the quality of solving problems of assessing the stability of power systems with Type 3 WT. Also, the studies made it possible to identify the areas of the application of generic models of Type 3 WT as a part of the model of the real dimension power system, at which the greatest and least errors arise, as well as their causes. Such a comprehensive assessment becomes feasible due to the alternative approach proposed in the article, based on the use of a detail benchmark tool model instead of the full-scale data to compare the results of modeling.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 573
Author(s):  
Mohamed Mokhtar ◽  
Mostafa I. Marei ◽  
Mariam A. Sameh ◽  
Mahmoud A. Attia

The frequency of power systems is very sensitive to load variations. Additionally, with the increased penetration of renewable energy sources in electrical grids, stabilizing the system frequency becomes more challenging. Therefore, Load Frequency Control (LFC) is used to keep the frequency within its acceptable limits. In this paper, an adaptive controller is proposed to enhance the system performance under load variations. Moreover, the proposed controller overcomes the disturbances resulting from the natural operation of the renewable energy sources such as Wave Energy Conversion System (WECS) and Photovoltaic (PV) system. The superiority of the proposed controller compared to the classical LFC schemes is that it has auto tuned parameters. The validation of the proposed controller is carried out through four case studies. The first case study is dedicated to a two-area LFC system under load variations. The WECS is considered as a disturbance for the second case study. Moreover, to demonstrate the superiority of the proposed controller, the dynamic performance is compared with previous work based on an optimized controller in the third case study. Finally in the fourth case study, a sensitivity analysis is carried out through parameters variations in the nonlinear PV-thermal hybrid system. The novel application of the adaptive controller into the LFC leads to enhance the system performance under disturbance of different sources of renewable energy. Moreover, a robustness test is presented to validate the reliability of the proposed controller.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Anh-Tuan Tran ◽  
Bui Le Ngoc Minh ◽  
Phong Thanh Tran ◽  
Van Van Huynh ◽  
Van-Duc Phan ◽  
...  

Nowadays, the power systems are getting more and more complicated because of the delays introduced by the communication networks. The existence of the delays usually leads to the degradation and/or instability of power system performance. On account of this point, the traditional load frequency control (LFC) approach for power system sketches a destabilizing impact and an unacceptable system performance. Therefore, this paper proposes a new LFC based on adaptive integral second-order sliding mode control (AISOSMC) approach for the large-scale power system with communication delays (LSPSwCD). First, a new linear matrix inequality is derived to ensure the stability of whole power systems using Lyapunov stability theory. Second, an AISOSMC law is designed to ensure the finite time reachability of the system states. To the best of our knowledge, this is the first time the AISOSMC is designed for LFC of the LSPSwCD. In addition, the report of testing results presents that the suggested LFC based on AISOSMC can not only decrease effectively the frequency variation but also make successfully less in mount of power oscillation/fluctuation in tie-line exchange.


Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu

Various renewable energy sources such as wind power and photovoltaic (PV) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this paper, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability is investigated in an IEEE 16-machine 68-bus power system. Firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by the linearized state-space modeling. On this basis, converter-driven stability analyses are performed to reveal the modal resonance mechanisms of the interconnected power systems and the modal interaction phenomenon. Additionally, time-domain simulations are conducted to verify effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, an optimization strategy is further proposed by retuning the controller parameters of the HRES system. The overall results demonstrate the modal interaction effect between external AC power system and the HRES system and its various impacts on converter-driven stability.


Sign in / Sign up

Export Citation Format

Share Document