scholarly journals The Maximum Scale Analysis of PV Generation Growth based on Power Grid Development

2019 ◽  
Vol 118 ◽  
pp. 02023
Author(s):  
Huang Zonghong ◽  
Wangcheng Long ◽  
Xiang Li ◽  
Xu dongjie ◽  
Zhe Sun

Since 2010, photovoltaic (PV) was growing rapidly for policy guidance in China. The large-scale PV electricity generation had a great influence on the power grid operation because of the change of the power supply layout. How to analyse the influence is an important matter to power system development. The analysed results will decide the trends of the PV electricity generation in future. Therefore, the Coordination analysis of PV generation growth is crucial to those developments. In this paper, the reasonable plant scale arrangement was discussed based on the difference between peak and valley of power system.

2014 ◽  
Vol 513-517 ◽  
pp. 2971-2974
Author(s):  
Jian Liu ◽  
Ying Wei Song ◽  
Yan Liu ◽  
Hui Lan Jiang ◽  
Shuang Qi Zheng

With expansion of the scale of wind power used in grid, its impact on the power grid has become more and more apparent. Because of its characteristics of intermittency and randomness, it is necessary to study the effect of wind power fluctuation on power system risk. The large scale wind power farm is connected to the power grid, the influence of its output fluctuation on static security of power grids is studied in this paper, and corresponding evaluation risk index of the power grid security is built. A new type of power system analysis software (PSAT) is used for the simulation analysis, and the results show that output fluctuation of wind power has great influence on low voltage and overload risk of power system.


2013 ◽  
Vol 448-453 ◽  
pp. 2259-2265
Author(s):  
Sheng Chun Yang ◽  
Bi Qiang Tang ◽  
Jian Guo Yao ◽  
Feng Li ◽  
Yi Jun Yu ◽  
...  

With the construction of UHV power grid, integration of large-scale renewable clean energy, and large-scale energy base putting into operation, the power grid dispatching faced with more and more complex challenges. On the basis of existing research results, architecture of intelligent dispatching based on situation awareness is proposed, so as to accurately achieve prevention and control of the power system. The shortcomings of traditional dispatching mode are analyzed firstly, and the concepts and characterization approaches of grid situational awareness and operation state trajectory of power grid are then introduced. The overall objective of intelligent dispatching is presented, including data processing and integrated knowledge mining, predictive perception of grid operation, risk analysis and comprehensive early warning, so as to achieve "automatic cruise under normal operating conditions, automatic navigation under abnormal operating conditions ". The functional framework of intelligent dispatching is also proposed in details, including four major aspects of the perception and forecasts, risk analysis, decision-making support, and automatic control, as well as three supporting functions such as post-assessment of dispatching, trajectory index calculation, and human-computer interaction (HCI).Technical innovations to support automatic intelligent dispatching are discussed and organised in three levels, i.e. perception, comprehension and projection. The breakthroughs are: construction of index system, trajectory recognition based on massive information and knowledge mining, trajectory projection taking into accounts the uncertainties, online risk assessment and early warning, power grid intelligent decision-making support, automatic coordination of grid operation control, online assessment, natural human-computer interaction mode, and etc... These are the future research areas of automatic intelligent dispatching.


2013 ◽  
Vol 805-806 ◽  
pp. 393-396
Author(s):  
Zhen Yu Xu ◽  
Zhen Qiao ◽  
Qian He ◽  
Xu Zhang ◽  
Jing Qi Su

With the penetration of wind energy is becoming higher and higher in power grid, it is very important to investigate the impact of wind generations on small signal stability. In this paper, a complete small signal model of wind turbine with direct-drive permanent magnet generator is built to study the impact of large-scale wind farms on the small signal stability of power system. By means of simulation and eigenvalue analysis, an actual power system is investigated, and the damping characteristic of power grid under different wind power penetration is discussed.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Lei Xi ◽  
Lang Liu ◽  
Yuehua Huang ◽  
Yanchun Xu ◽  
Yunning Zhang

Nowadays, haze has become a big trouble in our society. One of the significant solutions is to introduce renewable energy on a large scale. How to ensure that power system can adapt to the integration and consumption of new energy very well has become a scientific issue. A smart generation control which is called hierarchical and distributed control based on virtual wolf pack strategy is explored in this study. The proposed method is based on multiagent system stochastic consensus game principle. Meanwhile, it is also integrated into the new win-lose judgment criterion and eligibility trace. The simulations, conducted on the modified power system model based on the IEEE two-area load frequency control and Hubei power grid model in China, demonstrate that the proposed method can obtain the optimal collaborative control of AGC units in a given regional power grid. Compared with some smart methods, the proposed one can improve the closed-loop system performances and reduce the carbon emission. Meanwhile, a faster convergence speed and stronger robustness are also achieved.


2014 ◽  
Vol 1070-1072 ◽  
pp. 815-818
Author(s):  
Hui Qu ◽  
Xing Xian ◽  
Shao Qian Ding ◽  
Shan Shan Wen ◽  
Tao Lin ◽  
...  

The emergence of electricity transmission with farther transporting distance, extra-higher voltage and greater transporting power and the formation of the regional interconnected power grid have greatly increased the probability of blackout, this phenomenon has fully exposed the vulnerability of large-scale interconnected power systems. In this paper, Electrical betweenness based on load transfer coefficient is proposed to construct structural vulnerability assessment index. Meanwhile, it is verified that the method is rational and available by analysising the difference of the IEEE-39 system between three attack modes.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012083
Author(s):  
FengKai Lin ◽  
YanRong Li ◽  
YaWei Liu ◽  
LingXiao Chen

Abstract As a large, complex system with wide distribution and high real-time, the safe, stable and reliable operation of the power system is inseparable from the power automation system. In this paper, an in-depth study is conducted on the key issues of this solution in the process of software cross-platform integration around the EPRI graphic center method, combined with the power data interface standard. The dispatch center graphics system and the dispatch center power graphics application method are discussed in detail in the paper. In addition, the paper also explains the online calibration system for relay protection ratings with smart grid dispatching technology support system. The methods and sample systems in this paper have been practically applied in large scale power grid dispatching centers, providing a reliable guarantee for the safe and stable operation of the power grid.


2014 ◽  
Vol 953-954 ◽  
pp. 533-536
Author(s):  
Guang Lei Li ◽  
Xin Shi ◽  
Chun Xu Zhang ◽  
Hua Deng ◽  
Xian Zhen Zeng

At present, distributed wind is in its infancy, so engineering practice and related technology research and development is relatively lacking. The aging problem parallel operation between wind power and power grid enterprises is the issue that the whole world should be confronted with. This paper study the influence of wind power access to power grid operation, reveal the interactive mechanism of distributed wind power and power grid, formulate the corresponding technical specification and achieve the centralized control of distributed wind power. These can be used to guide the large-scale development of distributed wind power, which makes the development of distributed wind power guided by resource type guide transition to the grid type.


2020 ◽  
Vol 12 (22) ◽  
pp. 9333
Author(s):  
Sangwook Han

This paper proposes a reinforcement learning-based approach that optimises bus and line control methods to solve the problem of short circuit currents in power systems. Expansion of power grids leads to concentrated power output and more lines for large-scale transmission, thereby increasing short circuit currents. The short circuit currents must be managed systematically by controlling the buses and lines such as separating, merging, and moving a bus, line, or transformer. However, there are countless possible control schemes in an actual grid. Moreover, to ensure compliance with power system reliability standards, no bus should exceed breaker capacity nor should lines or transformers be overloaded. For this reason, examining and selecting a plan requires extensive time and effort. To solve these problems, this paper introduces reinforcement learning to optimise control methods. By providing appropriate rewards for each control action, a policy is set, and the optimal control method is obtained through a maximising value method. In addition, a technique is presented that systematically defines the bus and line separation measures, limits the range of measures to those with actual power grid applicability, and reduces the optimisation time while increasing the convergence probability and enabling use in actual power grid operation. In the future, this technique will contribute significantly to establishing power grid operation plans based on short circuit currents.


Sign in / Sign up

Export Citation Format

Share Document