scholarly journals Analysis Of Field Synergy In Bottom Heated Lid Driven Cubical Cavity

2019 ◽  
Vol 128 ◽  
pp. 07007
Author(s):  
H.P. Rani ◽  
V. Narayana ◽  
Y. Rameshwar

This study presents an innovative visualization tool for the analysis of the mixed convection in a lid-driven air filled cubical cavity heated from below. The total energy of the flow in the cavity isvisualized based on the energy stream functions or energy streamlines. Also the heat transfer enhancement in the cavity is presented with an analogy between conduction and convection, namely, the field synergy principle. Flow is assumed to be driven by the vertical temperature gradient and by the top lid of the cavity, which is assumed to slide on its own plane at a uniform speed. The top and bottom walls are assumed to be isothermal and all other walls are thermally insulated. Non dimensional governing equations of this problem are solved by using the finite volume method. Established open source CFD package OpenFOAM is utilized to investigate the flow with respect to the control parameters arising in the system. The nonlinear terms arising in the governing equations are discretized with the NVD schemes. The convection differencing schemes namely, UPWIND, QUICK, SUPERBEE and SFCD discussed and are used to simulate the flow using MPI code. It is observed that the computational cost for all the differencing schemes get reduced tremendously when the MPI code is implemented. Also SFCD scheme gave the Nuseelt number values close to those available in the literature. Extensive numerical flow visualization is conducted for the Reynolds number (Re = 100, 400, 1000) and the Richardson number (Ri = 0.001, 1, 10), which categorize the free and forced convective flow, respectively. It is observed that for a fixed value of Re, as Ri increases, the average Nusselt number (Nu¯), decreases. This shows that the natural convection starts to prevail with an increasing of Ri. But, for a fixed Ri, as Re increases (Nu¯) increases and the forced convection mode becomes dominant, leading to a chaotic flow. Plots demonstrating the influences of Re and Ri in termsof the contours of the fluid streamlines, isotherms, vortex corelines, and field synergy principle. The synergy angle of buoyant-aiding flow is high while the buoyant-opposing flow is significantly less than that of forced convection flow.

Author(s):  
Vekamulla Narayana

In the present study, an attempt is made to explore the flow field inside the differentially heated lid-driven square cavity. The governing equations along with boundary conditions are solved numerically. The simulated results (100 ≤ Re ≤ 1000 and 0.001 ≤ Ri ≤ 10) are validated with previous results in the literature. The convection differencing schemes, namely, UPWIND, QUICK, SUPERBEE, and SFCD, are discussed and are used to simulate the flow using the MPI code. It is observed that the computational cost for all the differencing schemes get reduced tremendously when the MPI code is implemented. Plots demonstrate the influences of Re and Ri in terms of the contours of the fluid streamlines, isotherms, energy streamlines, and field synergy principle.


2019 ◽  
Vol 396 ◽  
pp. 155-163
Author(s):  
Ana Paula Del Aghenese ◽  
Eliander Manke Heinemann ◽  
Gabriel de Avila Barreto ◽  
Filipe Branco Teixeira ◽  
Liércio André Isoldi ◽  
...  

In the present work it is performed a study on the geometric evaluation of a pair of elliptical tubes subjected to external flow with forced convection by means of numerical approach. The objectives are the maximization of Nusselt number (NuD) and the minimization of drag coefficient (CD). The degrees of freedom for the pair of tubes arrangement are: the ratio between the transverse pitch and characteristic length of tubes (ST/D), where D = (A)1/2, the ratio of the main and secondary axes of the elliptical tube (a/b) and the angle of incidence of the flow on the pair of tubes (α). The simulations were carried out considering two-dimensional forced convective flows, in the laminar regime and incompressible conditions. For all configurations, Reynolds and Prandtl numbers are constant, ReD = 100 and Pr = 0.71. The Finite Volume Method (FVM) is used to solve conservation equations of mass, momentum and energy. The software Gmsh is used for creation of the geometries and generation of the meshes. Results showed that the degrees of freedom affected the fluid dynamic and thermal performance of the forced convective flow. According to the objectives outlined in this study, the best performance for the maximization of heat transfer was obtained when α = 0o, a/b = 1⁄2 and ST/D = 3.5. In the case of the fluid dynamics study, the optimal result for CD minimization occurred when α = 0o, a/b = 2.0 and ST/D = 4.0. Thus, the optimal geometry will depend on the indicator performance where the problem is evaluated.


2011 ◽  
Vol 133 (7) ◽  
Author(s):  
A. B. Ansari ◽  
S. A. Gandjalikhan Nassab

This paper presents a numerical investigation for laminar forced convection flow of a radiating gas over an inclined backward facing step in a horizontal duct subjected to bleeding condition. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The two-dimensional Cartesian coordinate system is used to simulate flow over inclined surface by considering the blocked-off region in regular grid. The governing differential equations consisting the momentum and energy are solved numerically by the computational fluid dynamics techniques to obtain the velocity and temperature fields. Discretized forms of these equations are obtained by the finite volume method and solved using the SIMPLE algorithm. Since the gas is considered as a radiating medium, convection, conduction, and radiation heat transfer mechanisms take place simultaneously in the gas flow. For computation of the radiative term in the gas energy equation, the radiative transfer equation is solved numerically by the discrete ordinate method to find the radiative heat flux distribution inside the radiating medium. The effects of bleeding coefficient, inclination angle, optical thickness, albedo coefficient, and the radiation-conduction parameter on the flow and temperature distributions are carried out.


2019 ◽  
Vol 24 (2) ◽  
pp. 387-410
Author(s):  
Md. Shahjada Tarafder ◽  
M. Al Mursaline

Abstract This paper deals with the numerical simulation of a turbulent flow around two-dimensional bodies by the finite volume method with non-orthogonal body-fitted grid. The governing equations are expressed in Cartesian velocity components and solution is carried out using the SIMPLE algorithm for collocated arrangement of scalar and vector variables. Turbulence is modeled by the k- ε turbulence model and wall functions are used to bridge the solution variables at the near wall cells and the corresponding quantities on the wall. A simplified pressure correction equation is derived and proper under-relaxation factors are used so that computational cost is reduced without adversely affecting the convergence rate. The numerical procedure is validated by comparing the computed pressure distribution on the surface of NACA 0012 and NACA 4412 hydrofoils for different angles of attack with experimental data. The grid dependency of the solution is studied by varying the number of cells of the C-type structured mesh. The computed lift coefficients of NACA 4412 hydrofoil at different angles of attack are also compared with experimental results to further substantiate the validity of the proposed methodology.


2013 ◽  
Vol 17 (3) ◽  
pp. 773-786 ◽  
Author(s):  
Amir Ansaria ◽  
Nassaba Gandjalikhan

The present work investigates the laminar forced convection flow of a radiating gas over an inclined backward facing step (BFS) in a horizontal duct. The momentum and energy equations are solved numerically by the CFD techniques to obtain the velocity and temperature fields. Since, the twodimensional Cartesian coordinate system is used to solve the governing equations; the flow over inclined surface is simulated by considering the blocked-off region in regular grid. Discretized forms of the governing equations in the (x,y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. The fluid is treated as a gray, absorbing, emitting and scattering medium. Therefore, all of the convection, conduction and radiation heat transfer mechanisms take place simultaneously in the gas flow. For computation of the radiative term in the gas energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the radiative heat flux distribution inside the radiating medium. In the numerical results, effects of inclination angle, optical thickness, scattering albedo and the radiation-conduction parameter on the heat transfer behavior of the convection flow are investigated. This research work is a new one in which a combined convection-radiation thermal system with a complex flow geometry is simulate by efficient numerical techniques.


Sign in / Sign up

Export Citation Format

Share Document