INVESTIGATIONS ON HEAT TRANSFER IN WAVY CHANNELS USING FIELD SYNERGY PRINCIPLE

2018 ◽  
Author(s):  
S Harikrishnan ◽  
Shaligram Tiwari
Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 786
Author(s):  
Jiedong Ye ◽  
Junshuai Lv ◽  
Dongli Tan ◽  
Zhiqiang Ai ◽  
Zhiqiang Feng

The NH3 uniformity and conversion rate produced by the urea–water solution spray system is an essential factor affecting de-NOx efficiency. In this work, a three-dimensional simulation model was developed with the CFD software and was employed to investigate the effects of two typical injection methods (wall injection and center injection) and three distribution strategies (pre-mixer, post-mixer, pre-mixer, and post-mixer) of two typical mixers on the urea conversion rate and uniformity. The field synergy principle was employed to analyze the heat transfer of different mixer flow fields. The results show that the single mixer has instability in optimizing different injection positions due to different injection methods and injection positions. The dual-mixer is stable in the optimization of the flow field under different conditions. The conclusion of the field synergy theory of the single mixer accords with the simulation result. The Fc of the dual-mixer cases is low, but the NH3 conversion and uniformity index rate are also improved due to the increase in the residence time of UWS.


2013 ◽  
Vol 834-836 ◽  
pp. 1418-1422
Author(s):  
Qing Yun Liu ◽  
Fu Bing Tu ◽  
Sheng Yang Gao

This paper mainly explores the numerical simulation of flow and temperature fields in the shell-side of the radial heat pipe heat exchangers (HPHE), using CFD software-FLUENT. Field synergy principle is applied to analyze heat and mass transfer mechanism of heat exchangers; also, the influence of the variation of principle constructor parameters of heat exchangers on the field synergy effect and heat exchange performance has been studied. It has been found that better performance of heat exchangers is achieved with better field synergy effect; in the context of increasing transverse and longitudinal tube pitches within certain values of data, the heat transfer coefficient decreases as synergy angle increases. Variation of fin height has little effect on synergy angle, but it would decrease the heat transfer coefficient at unit pressure drop (k/Δp) as it increases; as fin pitch increases, the synergy angle first decreases and then grows, while k/Δp first increases and then decreases. The optimal ranges of heat exchanger structure parameters values were found.


2013 ◽  
Vol 17 (3) ◽  
pp. 823-832 ◽  
Author(s):  
Zuoyi Chen ◽  
Lizhi Zhang ◽  
Han Song

Included angles (?) have vital effect on the flow and heat transfer in cross-corrugated triangular ducts. The friction factor and Nusselt number were estimated at different Reynolds numbers from both experiments and simulations. Results show that the flow in the duck with ?=90 has the largest friction factor and Nusselt number. However, the included angle influences the flow and heat transfer in cross-corrugated triangular ducts in different ways. The field synergy principle was used to explore the mechanism of the different impacts of the included angle. Results show that the flow in the cross-corrugated triangular duct with ?=90o has the smallest domain averaged included angle (?m), which implies the best synergy performance. The results of the field synergy principle were also validated by analyzing the performance evaluation criterion and studying the velocity vector and temperature distributions.


Sign in / Sign up

Export Citation Format

Share Document