scholarly journals Analysis on Dynamic Response of Prestressed Concrete Slab Subjected to Blast Loading

2019 ◽  
Vol 136 ◽  
pp. 03015
Author(s):  
Chongxi Bai

The dynamic response of prestressed concrete slab under blast loading was analyzed based on LS-DYNA. The laws of influence of degree of prestress, combined reinforcement index, weight of explosives, thickness of slab on the dynamic response of prestressed concrete slab under blast loading were discussed, and the failure modes were given. The analysis results showed that the peak displacement at mid-span increased with increasing of degree of prestress and weight of explosives, and reduced with increasing of combined reinforcement index and thickness of slab. All the parameters, the influence of weight of explosives on displacement response of slab was significantly. Rationalization proposals were provided for blast resistant design of prestressed concrete slab.

The dynamic response of reinforced concrete (RC) panels without and with different configuration of opening under blast load scenario is investigated in the present study. The numerical simulations were carried out using finite element method with ABAQUS application. The concrete behavior under blast loading was modelled using Concrete damaged plasticity model. The material parameters for concrete damaged plasticity model were determined using methodology proposed by [14]. The parametric study was carried out using variation in blast load due to different charge weight. It was observed that the peak displacement increases with increase in blast load. It was also observed that at lower blast load, failure of reinforced concrete panel was initiated by cracking at rear face of panel but as the blast load increases the RC panel was failed by combination of crushing of front face of panel along with cracking of rear face. It was observed that for the given blast load, the RC panel without opening is less affected by crushing failure as compared to RC panel with opening configuration studied. It was also observed that the RC panel with circular opening at center is stiffer than other opening configuration and observed to have stable structural performance against the blast load studied.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Pan Zhang ◽  
Yuansheng Cheng ◽  
Jun Liu

Three-dimensional fully coupled simulation is conducted to analyze the dynamic response of sandwich panels comprising equal thicknesses face sheets sandwiching a corrugated core when subjected to localized impulse created by the detonation of cylindrical explosive. A large number of computational cases have been calculated to comprehensively investigate the performance of sandwich panels under near-field air blast loading. Results show that the deformation/failure modes of panels depend strongly on stand-off distance. The beneficial FSI effect can be enhanced by decreasing the thickness of front face sheet. The core configuration has a negligible influence on the peak reflected pressure, but it has an effect on the deflection of a panel. It is found that the benefits of a sandwich panel over an equivalent weight solid plate to withstand near-field air blast loading are more evident at lower stand-off distance.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Shujian Yao ◽  
Nan Zhao ◽  
Zhigang Jiang ◽  
Duo Zhang ◽  
Fangyun Lu

This paper aims at investigating the dynamic response of the steel box girder under internal blast loads through experiments and numerical study. Two blast experiments of steel box models under internal explosion were conducted, and then, the numerical methods are introduced and validated. The dynamic response process and propagation of the internal shock wave of a steel box girder under internal blast loading were investigated. The results show that the propagation of the internal shock wave is very complicated. A multi-impact effect is observed since the shock waves are restricted by the box. In addition, the failure modes and the influence of blast position as well as explosive mass were discussed. The holistic failure mode is observed as local failure, and there are two failure modes for the steel box girder's components, large plastic deformation and rupture. The damage features are closely related to the explosive position, and the enhanced shock wave in the corner of the girder will cause severe damage. With the increasing TNT mass, the crack diameter and the deformation degree are all increased. The longitudinal stiffeners restrict the damage to develop in the transverse direction while increase the crack diameter along the stiffener direction.


2015 ◽  
Vol 744-746 ◽  
pp. 315-318
Author(s):  
Hao Du ◽  
Chun Hua Liu

The terrorism and regional conflicts posed a threat to the world peace. Some terrorist explosions caused collapse of the buildings, which brought heavy tragedies to the human components. Therefore research on damage of structural components and resistance to damage have become the focus of our attention. Finite element software LS-DYNA was applied to simulating the response of reinforced concrete columns under blast loading. And analysis on dynamic response under different loading period was carried out. By studying on the stress and strain of reinforced concrete columns subjected to blast loading, the possible failure modes were obtained. In addition, the bearing capacities of concrete columns that are reinforced with carbon fiber and steel panel were analyzed, and the reinforcement effects were compared to provide reasonable reinforcement schemes for structures blast-resistant design.


2014 ◽  
Vol 507 ◽  
pp. 291-294
Author(s):  
Zhi Zhong Li ◽  
De Gao Tang ◽  
Wei Wei Li ◽  
Zhi Fang Yan

Reinforced concrete panels were tested explosion for reinforced concrete slab in the dynamic response under blast loading. Dimensions of 1300mm×1300mm×50mm plates under different reinforcement ratio were designed. Explosion test was carried out for three different batches of reinforcement ratio reinforced concrete slab in the explosion simulator. The load was calculated using empirical formulas. Blast loading time curve was obtained by the explosion test and the correctness of the numerical simulation method was verified. The results indicate that reinforced concrete slab under blast loading is different from static damage destruction. Diagonal cracks appear on plat under the blast loading destroyed. When the peak load is large, a large square cracks plate was appeared in the middle of the plate and accompanied diagonal cracks. When the peak load is small, diagonal cracks develop fully, square cracks were smaller.


2017 ◽  
Vol 78 ◽  
pp. 122-133 ◽  
Author(s):  
Ying Li ◽  
Weiguo Wu ◽  
Haiqing Zhu ◽  
Zhen Wu ◽  
Zhipeng Du

Sign in / Sign up

Export Citation Format

Share Document