scholarly journals Accuracy of pile capacity assessment on the basis of piling reports

2019 ◽  
Vol 97 ◽  
pp. 04029 ◽  
Author(s):  
Jakub Rainer

Current assessment of foundation pile bearing capacity during driving may considerably improve operational reliability in terms of loads to be transferred. It also enables proper design and trial examinations by focusing attention on piles with atypical driving characteristics. The paper presents the method applicable to assess the bearing capacity of prefabricated driven piles and provides analysis of likelihood of this assessment by the example of numerous prefabricated piles documented by piling reports and results of static pile load tests to the extent allowing to determining the limit bearing capacity. The results attained could be the basis to determine respective safety factors in pile design based on driving resistance analysis.

2001 ◽  
Vol 38 (2) ◽  
pp. 364-377
Author(s):  
Ahmed Shlash Alawneh ◽  
Osama Nusier ◽  
Abdullah I Husein Malkawi ◽  
Mustafa Al-Kateeb

In this paper, empirical formulae were developed between the well-known pile bearing capacity factors (Nq and β) and parameters which include friction angle of sand, relative density, average effective vertical stress, and deformability of the soil below the pile toe. The developed empirical formulae were totally based on a database comprised of 28 well-documented compressive pile load tests collected exclusively from geotechnical literature. The actual measurements of shaft and end-bearing resistances of each pile in the database were adjusted to account for post-driving residual loads. Calculation of pile bearing capacity factors (Nq and β) was based on the adjusted shaft and end-bearing resistances rather than the actual unadjusted measured resistances for residual loads. Comparison of predicted and measured compressive capacity of an independent database comprised of 18 pile load tests showed that the developed formulae yield a reasonably accurate estimate of compressive pile capacity in cohesionless soils.Key words: driven piles, residual load, toe resistance, shaft resistance.


2020 ◽  
Vol 53 (12) ◽  
pp. 5531-5543
Author(s):  
John W. Barrett ◽  
Luke J. Prendergast

AbstractIn this paper, an empirical relationship between the Unconfined Compressive Strength (UCS) of intact rock and the unit shaft resistance of piles penetrating rock is investigated. A growing number of civil engineering projects are utilizing steel piles driven into rock where a significant portion of the pile capacity is derived from the shaft resistance. Despite the growing number of projects utilizing the technology, little to no guidance is offered in the literature as to how the shaft resistance is to be calculated for such piles. A database has been created for driven piles that penetrate bedrock. The database consists of 42 pile load tests of which a majority are steel H-piles. The friction fatigue model is applied to seven of the pile load tests for which sufficient UCS data exists in order to develop an empirical relation. The focus of this paper is on case histories that include driven pipe piles with at least 2 m penetration into rock.


2011 ◽  
Vol 243-249 ◽  
pp. 4402-4407
Author(s):  
Yong Hong Miao ◽  
Guo Jun Cai ◽  
Song Yu Liu

Six methods to determine axial pile capacity directly based on piezocone penetration test (CPTU) data are presented and evaluated. Analyses and evaluation were conducted on three types piles that were failed during pile load testing. The CPT methods, as well as the CPTU methods, were used to estimate the load carrying capacities of the investigated piles (Qp ). Pile load test were used to determine the measured load carrying capacities (Qm). The pile capacities determined using the different methods were compared with the measured pile capacities obtained from the pile load tests. Two criteria were selected as bases of evaluation: the best fit line for Qp versus Qm and the arithmetic mean and standard deviation for the ratio Qp /Qm. Results of the analyses showed that the best methods for determining pile capacity are the CPTU methods.


2020 ◽  
Vol 10 (16) ◽  
pp. 5492
Author(s):  
Michał Baca ◽  
Włodzimierz Brząkała ◽  
Jarosław Rybak

This work examined a new method of bi-directional static load testing for piles, referencing the Osterberg test. Measurements were taken, on a laboratory scale, using six models of piles driven into a box filled with sand. This method allowed for separate measurements of pile base and pile shaft bearing capacities. Based on the results, the total pile bearing capacity and equivalent Q–s diagrams were estimated. The results obtained show that the structure of the equivalent curve according to Osterberg is a good approximation of the standard Q–s curve obtained from load tests, except for loads close to the limit of bearing capacity (those estimates are also complicated by the inapplicability and ambiguity of a definition of the notion of limit bearing capacity); the equivalent pile capacity in the Osterberg method represents, on average, about 80% of the capacity from standard tests.


2017 ◽  
Vol 54 (7) ◽  
pp. 968-986 ◽  
Author(s):  
Jared Harnish ◽  
M. Hesham El Naggar

Large-diameter helical piles are utilized increasingly to support heavy structures. Both the magnitude of the required installation torque and the pile capacity can be directly attributed to the soil shearing resistance developed over the embedded area of the pile including the shaft and helical plates. Hence, the pile capacity can be correlated to installation torque. Such correlations are widely used in the helical pile industry as a means for quality control and quality assurance. In the current study, a total of 10 test piles were installed while monitoring the installation torque continuously with depth. The recorded installation torque profiles were demonstrated to be accurate and repeatable. Field pile load tests were conducted and their results were analyzed to determine the interpreted ultimate capacity of the test piles. The results demonstrate that the ultimate capacity of large-diameter helical piles can be interpreted from pile load test data employing the failure criteria proposed by Elkasabgy and El Naggar in 2015 and Fuller and Hoy in 1970. The measured installation torque and corresponding ultimate capacity values were employed to define torque–capacity correlation (Kt) based on embedded pile area. It was demonstrated that the proposed Kt is suitable for large-diameter helical piles.


2018 ◽  
Vol 149 ◽  
pp. 02025 ◽  
Author(s):  
A Benali ◽  
A Nechnech ◽  
B Boukhatem ◽  
M N Hussein ◽  
M Karry

Determination of pile bearing capacity from the in-situ tests has developed considerably due to the significant development of their technology. The project presented in this paper is a combination of two approaches, artificial neural networks and main component analyses that allow the development of a neural network model that provides a more accurate prediction of axial load bearing capacity based on the SPT test data. The retropropagation multi-layer perceptron with Bayesian regularization (RB) was used in this model. This was established by the incorporation of about 260 data, obtained from the published literature, of experimental programs for large displacement driven piles. The PCA method is proposed for compression and suppression of the correlation between these data. This will improve the performance of generalization of the model.


2013 ◽  
Vol 35 (4) ◽  
pp. 65-74 ◽  
Author(s):  
Kazimierz Gwizdała ◽  
Paweł Więcławski

Abstract One of the most popular types of foundations in layered subsoil with very differentiated soil shear strengths are precast piles. One of the reasons is the fact that we can well control the driving process during the installation of these piles. The principles of the assessment of bearing capacity and settlements of the piles given by Eurocode 7, concentrate on two main methods, i.e., Static Pile Load Tests (SPLT) and Dynamic Driving Analysis (PDA). However, the evaluation of real load-settlement curve for piles being driven in layered subsoil, where noncohesive and cohesive soils occur alternately, is neither easy nor straightforward. In the paper, the results of both SPLT and PDA tests for objects on the highways in Poland are presented. Field investigations carried out at various time points since the installation of piles (from 7 to 90 days) revealed an increase of bearing capacity with time. The reason for this may be a change of the soil state near the piles due to their driving (displacement of piles) as well as a change of microstructure at the contact between soil and pile shaft. The results of load tests were referred to the geotechnical parameters of the subsoil, which was recognized by means of traditional borings and CPTU tests. The results of tests allow phenomena occurring with time to be assessed and bearing capacity of precast piles to be predicted.


2021 ◽  
Vol 337 ◽  
pp. 03011
Author(s):  
Fernando Feitosa Monteiro ◽  
Renato Pinto da Cunha ◽  
Marcos Fábio Porto de Aguiar ◽  
Carlos Medeiros Silva

Bearing capacity of single piles are occasionally predicted using the renowned theoretical methods (α and β methods). These methods are based on laboratory tests, which can be time-consuming, but also applicable in foundation engineering practice for unsaturated soils. Full-scale pile load tests were carried out on bored piles equipped with Expander Body Systems in the Federal District of Brazil, known for its unsaturated, collapsible and porous soil. This paper has the aim to assess the applicability of the β method, considering the contribution of soil matric suction, in order to estimate the bearing capacity of these piles subjected to uplift and compression loads in unsaturated soils. Based on the experimental results, it is indicated that the use of the β method considering the matric suction, can be a useful tool for bearing capacity estimation of bored piles equipped with Expander Body Systems in unsaturated soils.


2021 ◽  
Vol 13 (21) ◽  
pp. 11862
Author(s):  
Chia Yu Huat ◽  
Seyed Mohammad Hossein Moosavi ◽  
Ahmed Salih Mohammed ◽  
Danial Jahed Armaghani ◽  
Dmitrii Vladimirovich Ulrikh ◽  
...  

In geotechnical engineering, there is a need to propose a practical, reliable and accurate way for the estimation of pile bearing capacity. A direct measure of this parameter is difficult and expensive to achieve on-site, and needs a series of machine settings. This study aims to introduce a process for selecting the most important parameters in the area of pile capacity and to propose several tree-based techniques for forecasting the pile bearing capacity, all of which are fully intelligent. In terms of the first objective, pile length, hammer drop height, pile diameter, hammer weight, and N values of the standard penetration test were selected as the most important factors for estimating pile capacity. These were then used as model inputs in different tree-based techniques, i.e., decision tree (DT), random forest (RF), and gradient boosted tree (GBT) in order to predict pile friction bearing capacity. This was implemented with the help of 130 High Strain Dynamic Load tests which were conducted in the Kepong area, Malaysia. The developed tree-based models were assessed using various statistical indices and the best performance with the lowest system error was obtained by the GBT technique. The coefficient of determination (R2) values of 0.901 and 0.816 for the train and test parts of the GBT model, respectively, showed the power and capability of this tree-based model in estimating pile friction bearing capacity. The GBT model and the input selection process proposed in this research can be introduced as a new, powerful, and practical methodology to predict pile capacity in real projects.


Sign in / Sign up

Export Citation Format

Share Document