scholarly journals Characteristics of interactions between black shale and water

2019 ◽  
Vol 98 ◽  
pp. 01033
Author(s):  
Xin Liao ◽  
Kangji Wang ◽  
Xiyong Wu ◽  
Sixiang Ling ◽  
Deping Guo ◽  
...  

Some geological engineering problems are caused by weathering of black shale within dispersed sulfide minerals (mainly pyrite), in which some weathering products such as acid water and expansive sulfates play an important role. These effects are essentially manifested through oxidation of sulfide minerals. Complex chemical reactions occur simultaneously and influence mutually in water-rock interaction process. Chemical weathering of black shale is a factor leading to engineering problems such as landslides and acid corrosion. The objectives of present study are to understand the process of water-rock interactions between black shale and water. The semi-immersion simulation experiment is mainly used to explore the chemical weathering characteristics of black shale under natural conditions.

2021 ◽  
Vol 21 (1) ◽  
pp. 195-211
Author(s):  
Xi-Zhun Zhuo ◽  
Bin-Xue Niu ◽  
Yi-Wen Ju ◽  
Lin-Yan Zhang ◽  
Qing-Huan Yan ◽  
...  

Understanding the controls on composition changes and porosity evolution in the critical zone of shale remains a major challenge. The aim of the present study is to develop a model of the changes in mineral compositions, chemical compositions and nanopore formation in shale during the initial weathering stage. To understand these processes, we selected a Silurian shale profile rich in pyrite and organic matter located in South China. Based on X-ray diffraction (XRD) and bulk elemental data, the variations in mineralogical and chemical compositions with depth were studied. To characterize the full pore size spectrum and to gain insight into the nature of secondary pores and their relationship with weathering, nuclear magnetic resonance (NMR) measurements and petrographic observations were combined with scanning electron microscopy (SEM) imaging. The results show that Al and K are enriched slightly, while Ca and Na are depleted in the upper part of the weathering profile. Si, Mn and Ti are relatively stable from the bottom to the top of the profile. Quartz, feldspar, mica, illite and chlorite are the main minerals in the parent rock, and they are relatively stable along the profile. The rock density gradually decreases from 2.6 g/cm3 to 2.1 g/cm3 from the bottom to the top, and the color of the shales changes from black to grayish yellow, but no secondary minerals are detected. The chemical weathering of black shale is dominated by the oxidation of pyrite and organic matter, giving rise to color variation and nanopore formation. The increase in interparticle pores at the nanometer-micron scale is initiated by the dissolution of easily weathered components such as organic matter and pyrite. The removal of clay minerals and tiny particles by groundwater seepage may be the main cause of porosity enhancement during the initial weathering stage. This study suggests that nanoporosity may play an important role in the process of fluid-rock interaction within black shale during the initial weathering stage.


2020 ◽  
Author(s):  
Marie Haut-Labourdette ◽  
◽  
Daniele Pinti ◽  
André Poirier ◽  
Marion Saby ◽  
...  

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Otman EL Mountassir ◽  
Mohammed Bahir ◽  
Driss Ouazar ◽  
Abdelghani Chehbouni ◽  
Paula M. Carreira

AbstractThe city of Essaouira is located along the north-west coast of Morocco, where groundwater is the main source of drinking, domestic and agricultural water. In recent decades, the salinity of groundwater has increased, which is why geochemical techniques and environmental isotopes have been used to determine the main sources of groundwater recharge and salinization. The hydrochemical study shows that for the years 1995, 2007, 2016 and 2019, the chemical composition of groundwater in the study area consists of HCO3–Ca–Mg, Cl–Ca–Mg, SO4–Ca and Cl–Na chemical facies. The results show that from 1995 to 2019, electrical conductivity increased and that could be explained by a decrease in annual rainfall in relation to climate change and water–rock interaction processes. Geochemical and environmental isotope data show that the main geochemical mechanisms controlling the hydrochemical evolution of groundwater in the Cenomanian–Turonian aquifer are the water–rock interaction and the cation exchange process. The diagram of δ2H = 8 * δ18O + 10 shows that the isotopic contents are close or above to the Global Meteoric Water Line, which suggests that the aquifer is recharged by precipitation of Atlantic origin. In conclusion, groundwater withdrawal should be well controlled to prevent groundwater salinization and further intrusion of seawater due to the lack of annual groundwater recharge in the Essaouira region.


Author(s):  
Carleton R. Bern ◽  
Justin E. Birdwell ◽  
Aaron M. Jubb

Comparisons of hydrocarbon-produced waters from multiple basins and experiments using multiple shales illustrate water–rock interaction influence on produced water chemistry.


1990 ◽  
Vol 84 (1-4) ◽  
pp. 322-325 ◽  
Author(s):  
C.I. Steefel ◽  
P. Van Capellen ◽  
K.L Nagy ◽  
A.C. Lasaga

2014 ◽  
Vol 78 (6) ◽  
pp. 1473-1477
Author(s):  
Jan Přikryl ◽  
Andri Stefánsson

The interaction of CO2-rich water with olivine was studied using geochemical reaction modelling in order to gain insight into the effects of temperature, acid supply (CO2) and extent of reaction on the secondary mineralogy, water chemistry and mass transfer. Olivine (Fo93) was dissolved at 150 and 250ºC and pCO2 of 2 and 20 bar in a closed system and an open system with secondary minerals allowed to precipitate. The progressive water–rock interaction resulted in increased solution pH, with gradual carbonate formation starting at pH 5 and various Mg-OH and Mg-Si minerals becoming dominant at pH>8. The major factor determining olivine alteration is the pH of the water. In turn, the pH value is determined by acid supply, reaction progress and temperature.


Sign in / Sign up

Export Citation Format

Share Document