scholarly journals Parametric studies on the ductility of axial loaded square reinforced concrete column made of normal-strength concrete (NSC) and high-strength steel confining rebar (HSSCR) with various ties configuration

2020 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Anis Aulia Ulfa ◽  
Bambang Piscesa ◽  
Mario M. Attard ◽  
Faimun Faimun ◽  
Pujo Aji

During an earthquake, Reinforced Concrete (RC) building structures should behave in a ductile manner to prevent the structures from collapse. Therefore, the column element should have sufficient ductility to sustain an axial load at the post-peak region. Ductility of the RC column can be sufficiently provided by confinement to the RC column core. Therefore, in this paper, ductility of square RC columns made of NSC and HSSCR are analyzed using three-dimensional nonlinear finite element analysis (3D-NLFEA) with various ties configurations. In total, 12 specimens for each transverse steel rebar configuration were examined. The measurement used for ductility comparisons is the I10 index (AS 3600-2018) which is compared with the concept of ductility available in the literature (for example ACI 318-14). The study found that the computed minimum transverse steel rebar diameter based on ACI 318-14 showed larger diameter than the AS 3600:2018. From the 3DNLFEA analysis found that using a confining rebar higher than 700 MPa with the same volumetric ratio shows lower ductility for the Type I RC column configuration.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bedaso Ahmed ◽  
Kefiyalew Zerfu ◽  
Elmer C. Agon

Slender reinforced concrete column may fail in material failure or instability failure. Instability failure is a common problem which cannot be analyzed with first-order analysis. So, second-order analysis is required to analyze instability failure of slender RC column. The main objective of this study was to construct uniaxial interaction diagram for slender reinforced concrete column based on nonlinear finite element analysis (FEA) software. The key parameters which were studied in this study were eccentricity, slenderness ratio, steel ratio, and shape of the column. Concrete damage plasticity (CDP) was utilized in modeling the concrete. Material nonlinearity, geometric nonlinearity, effect of cracking, and tension stiffening effect were included in the modeling. The results reveal that, as slenderness ratio increases, the balanced moment also increases, but the corresponding axial load was decreased. However, increasing the amount of steel reinforcement to the column increases the stability of the column and reduces the effect of slenderness ratio. Also, the capacity of square slender RC column is larger than rectangular slender RC column with equivalent cross section. However, the result is close to each other as slenderness ratio increased. Finally, validation was conducted by taking a benchmark experiment, and it shows that FEA result agrees with the experimental by 85.581%.


2014 ◽  
Vol 1015 ◽  
pp. 219-222 ◽  
Author(s):  
Jian Sheng Dong ◽  
Qing Xin Ren ◽  
Lian Guang Jia

A three-dimensional finite element analysis model was developed using ABAQUS to simulate the temperature distributions of circular concrete filled steel tube reinforced concrete column in this paper. The influence of main parameters on the temperature distribution, such as heating time, section diameter, and steel tube diameter, was analyzed. This provides valuable information about structural fire resistance and structural behaviour of concrete filled steel tube reinforced concrete column structure under fire.


2014 ◽  
Vol 633-634 ◽  
pp. 947-951
Author(s):  
Peng Fei Zhang ◽  
Feng Ping Zhou ◽  
Zhong Qing Shen

The new damage assessment criteria of reinforced concrete column was analyzed and defined in the paper. RC column finite element analysis model was established, then damage patterns of the explosion impact on RC column are obtained by means of numerical simulation. The P-I curve of RC column is ascertained. Based on damage criteria and finite element analysis result, we put forward a simplified numerical method to ascertain RC column P-I curve. By contrast, the applicability and validity of simplified numerical method is satisfactory.


2018 ◽  
Vol 45 (6) ◽  
pp. 504-515 ◽  
Author(s):  
Farzad Rouhani ◽  
Lan Lin ◽  
Khaled Galal

It is known that building structures would undergo nonlinearity during progressive collapse. Given this, modelling the nonlinear behaviour of structural members is critical for assessing their resistance. The objective of this study is to develop the nonlinear modelling parameters of reinforced concrete (RC) beams for the progressive collapse analysis. To achieve this, three types of RC moment-resisting buildings located in high, moderate, and low seismic zones in Canada are designed. Nonlinear pushdown analyses are then conducted on 27 three-dimensional finite element models using ABAQUS to examine the case that one column on the ground level is removed. Based on the analysis results, an idealized moment-rotation curve for modelling the plastic hinge in beams with different ductility is proposed. In comparison with the 2013 GSA modelling parameters, smaller chord rotations are observed from the detailed finite element analysis.


2012 ◽  
Vol 174-177 ◽  
pp. 455-459 ◽  
Author(s):  
Xiao Wei Li ◽  
Xue Wei Li ◽  
Xin Yuan

For expedite the development of high titanium heavy slag concrete, eight high titanium heavy slag high strength reinforced concrete (HTHS-HSRC) scale model column are studied. The eight HTHS-HSRC model columns are tested under reversed horizontal force. Primary experimental parameters include axial load ratio varying from 0.3 to 0.5, volumetric ratios of transverse reinforcement ranging from 1.38% to 1.56%, strength of high titanium heavy slag high strength concrete varying from 55.9 to 61.6 N/mm2 and configurations of transverse reinforcement. It is found from the test result that HTHS-HSRC model columns provides comparable seismic performance to those usually used reinforced concrete column in terms of member ductility, hysteretic and energy dissipation capacity. Primary Factors of Displacement Ductility of Model Columns are also discussed.


The composite structural element under study is a carbon fiber wrapped, steel I section reinforced concrete column. The wrapped CFRP is under tension and reinforced concrete under radial compression. The aim of the research is to determine the behavior of the composite structural element under axial loads. The Stress-strain characteristics and load bearing capacity of control and CFRP wrapped tubular columns were determined experimentally. Further, Finite element analysis of steel, reinforced concrete and CFRP wrapped concrete columns sections, was conducted using ANSYS Workbench 15.0 software. The experimental and analytical results were compared.


2013 ◽  
Vol 351-352 ◽  
pp. 615-618 ◽  
Author(s):  
Jian Hua Chen ◽  
Chao Ma ◽  
Jian Hua Li ◽  
Qin Qian

In order to analyze the mechanical properties of the remaining carrying capacity of steel reinforced concrete columns after exposure to fire, full preparations must be needed. In this paper, the numerical simulation of the temperature field of steel reinforced concrete column section was being adopted the finite element analysis software MSC.MARC to analyze. Temperature distribution law of the column cross-section in the case of uneven fire was obtained. There has a nice agreement between calculation and original test data which created the conditions for high temperature and high temperature performance analysis for SRC columns


Sign in / Sign up

Export Citation Format

Share Document