scholarly journals Study of the compression behaviour of grape seeds using the Finite Element Method

2020 ◽  
Vol 180 ◽  
pp. 03017
Author(s):  
Carmen Vasilachi (Baltăţu) ◽  
Sorin-Ştefan Biriş ◽  
Gabriel Gheorghe

It is important to know all phenomena that occur during compression of grape seeds because are very complex. Studying these phenomena can help us in increasing the performance of the equipment. Also for the pressing of oilseed materials, it is helpful to understand the compression behavior of grape seeds. The purpose of this study is to find how the stress and deformation propagate in grape seeds during the compression process. Therefore, we used an advanced engineering method named finite element method that shows the propagations of stress and strain fields in grape seeds. In this paper, we made a two dimensional model of grape seed and we analyzing the dispersion of stress and strain with a dedicated software FEM. In the end, to validate the FEM model we made a compression test on grape seeds using a Hounsfield unit. This study is for highlighting the importance of the orientation of the grape seeds during the pressing process to reduce the energy consumed.

AGROFOR ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Sorin-Ștefan BIRIȘ ◽  
Mariana IONESCU ◽  
Neluș-Evelin GHEORGHIȚĂ ◽  
Nicoleta UNGUREANU ◽  
Nicolae-Valentin VLĂDUȚ

It is known that the phenomena that occur during compression of sunflower seedsare very complex. Comprehension of these phenomena is important for increasingthe performance of the equipment in the vegetable oil industry, both for thecracking of shells and for the grinding of kernels. Also for the pressing of oilseedmaterials it is helpful to understand the compression behavior of sunflower seeds.The major objective of this work is to find an easy way of highlighting how thestresses and deformations propagate in sunflower seeds kernels and shells duringthe compression process, with the aim of optimizing the energy consumptionrequired for the mechanical processing. Therefore, now days there is and we canuse the finite element method. This method is the most advanced engineering toolfor computing numerical and mathematical modeling of complex phenomenainvolving the propagation of stress and strain fields in continuous media. In thispaper a two-dimensional FEM model for analyzing sunflower seeds subjected atcompression by axial and lateral directions is presented. For experimentalvalidation of FEM model we made uniaxial compression tests on sunflower seeds,using a Hounsfield/Tinius Olsen unit for mechanical tests, H1KS model. Themodels used in this work highlight that the orientation of the seeds is veryimportant. There are situations when it is desirable that the stresses to be higher (atshelling, grinding, pressing, etc.) or situations when it is desirable that the stressesto be smaller (at transport, storage, etc.).


Author(s):  
Iskandar Hasanuddin ◽  
Husaini ◽  
M. Syahril Anwar ◽  
B.Z. Sandy Yudha ◽  
Hasan Akhyar

2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Budi Setiyana

Sehingga setiap komponen dari bus harus memiliki struktur rangka yang kuat terutama pada tiang utama. Masing-masing tiang utama umumnya dibuat dari sebuah baja profil tunggal (model tunggal). Tetapi tiang utama bus ini juga dapat dibuat dari gabungan dua buah baja profil dengan cara di las (model ganda) yang mempunyai dimensi luar yang sama dengan model tunggal. Penelitian ini bertujuan memodelkan dan membandingkan performa tiang utama sebuah bus untuk tiang model tunggal dan model ganda dengan menggunakan FEM (Finite Element Method). Hasil simulasi FEM adalah berupa tegangan dan displacement. Berdasarkan hasil analisis, didapatkan tegangan dan displacement pada tiang utama model tunggal yaitu berturut turut sebesar 1,287 x 106 N/m2 dan 6,448 x 10-1 mm. Sedangkan tegangan dan displacement pada tiang utama model ganda yaitu berturut turut sebesar 2,936 x 106 N/m2 dan 1,580 mm.  Dari hasil simulasi, bentuk rangka tiang utama yang terbaik adalah tiang utama model tunggal karena memiliki tingat keamanan yang tinggi dibandingkan dengan tiang model ganda baik dari sisi tegangan maupun displacement.Kata kunci: FEM, model tunggal, model ganda, tiang utama


2021 ◽  
Author(s):  
Alejandro Ortega Laborin ◽  
Yann MALECOT ◽  
Emmanuel ROUBIN ◽  
Laurent DAUDEVILLE

This paper studies the use of the Embedded Finite Element Method (E-FEM) for the numerical modelling of triaxial fracture processes in non-homogeneous quasi-brittle materials. The E-FEM framework used in this study combines two kinematics enhancements: a weak discontinuity allowing the model to account for material heterogeneities and a strong discontinuity allowing the model to represent local fractures. The strong discontinuity features enriched fracture kinematics that allow the modelling of all typical fracture modes in three dimensions. A brief review is done of past work using similar enriched finite element frameworks to approach this problem. The work continues by establishing the theoretical basis of each kind of discontinuity formulation and their superposition through the Hu-Washizu variational principle. Afterwards, two groups of simulations have been done for discussing the performance of this combined E-FEM model: homogeneous simulations and simple heterogeneous simulations. Simple homogeneous material simulations aim to test the capabilities of the strong discontinuity model featuring full 3-D kinematics. Simple heterogeneous simulations show numerical applications of the model to the problem of a single spherical inclusion embedded into a homogeneous matrix. Comparisons will be made with another E-FEM model considering a single local fracture mode approach to discuss the differences on the representation of fracture physics under all explored conditions. A concluding statement is made on the benefits and complications identified for the E-FEM framework in this kind of applications.


Author(s):  
Yong Bai ◽  
Zhimeng Yu

Pipeline on-bottom stability is one of the sophisticated problems in subsea pipeline design procedure. Due to the uncertainty of the pipe-soil interaction and environment loads, including wave, current, or earthquake, etc., it is classified as the typical nonlinear problem. The Finite Element Method is introduced into pipeline engineering several years ago. More and more special engineering software such as AGA, PONDUS are available in market. However, when doing a project, some abnormal data was found when compared the DnV calculation results and AGA. In order to know the behavior of pipeline on seabed under wave and current load, finite element method – ABAQUS is introduced to do this analysis. The ABAQUS/explicit is used to simulate 600s pipeline dynamic response. The pipeline is supposed to be exposed on seabed and the selected seabed model is large enough to avoid the edge effect. ABAQUS calculation results are compared with the requirements in DnV rules to verify the validity of finite element model.


2016 ◽  
Vol 13 (02) ◽  
pp. 1640007 ◽  
Author(s):  
Z. X. Gong ◽  
Y. B. Chai ◽  
W. Li

The cell-based smoothed finite element method (CS-FEM) using the original three-node Mindlin plate element (MIN3) has recently established competitive advantages for analysis of solid mechanics problems. The three-node configuration of the MIN3 is achieved from the initial, complete quadratic deflection via ‘continuous’ shear edge constraints. In this paper, the proposed CS-FEM-MIN3 is firstly combined with the face-based smoothed finite element method (FS-FEM) to extend the range of application to analyze acoustic fluid–structure interaction problems. As both the CS-FEM and FS-FEM are based on the linear equations, the coupled method is only effective for linear problems. The cell-based smoothed operations are implemented over the two-dimensional (2D) structure domain discretized by triangular elements, while the face-based operations are implemented over the three-dimensional (3D) fluid domain discretized by tetrahedral elements. The gradient smoothing technique can properly soften the stiffness which is overly stiff in the standard FEM model. As a result, the solution accuracy of the coupled system can be significantly improved. Several superior properties of the coupled CS-FEM-MIN3/FS-FEM model are illustrated through a number of numerical examples.


Author(s):  
Jiemin Liu ◽  
Guangtao Ma

A typical ground imitating tank is analyzed regarding it as the thin-walled structure composed of plates (skins) and beams (reinforcement) using finite element method (FEM). Through moving the location of reinforcements, make the skins close with the flanges of the reinforcements in order to imitate actually the connection of the skins and the reinforcements. The thickness of plates, the size and the geometry shape and the location of reinforcements are taken as parameters to be optimized. In calculation, not only consider effects of the oil-weight, the extra-pressure in tank and the dead weight of the tank on the stresses and displacements of the tank, but also analyze the effects of the inertia forces produced due to the rotation of the tank on the stresses and displacements. Displacement, stress and deformation distributions of the ground imitating tank under the three typical flying postures imitated are given.


Sign in / Sign up

Export Citation Format

Share Document