scholarly journals Performance Investigation of Grid-Connected DFIG using Integrated Shunt Active Filtering Capabilities

2020 ◽  
Vol 184 ◽  
pp. 01041
Author(s):  
Krishna S. Patel ◽  
Vijay H. Makwana

This paper presents the modified grid side converter control (GSC) technique which enable the GSC to work as a shunt active filter to mitigate the grid current harmonics produced by the nonlinear load, as well as to transfer power from the grid to the rotor of doubly fed induction generator (DFIG) or vice versa. The main contribution of this proposed technique is an addition of a shunt active filter with space vector pulse width modulation (SVPWM) controller in GSC control itself in order to achieve a better grid current %THD profile, and simultaneously to control active power for variable wind speed. The reactive power supply to the DFIG and extraction of maximum power is achieved using RSC. The comparison of the modified GSC control technique using hysteresis current control (HCC), and SVPWM controller used to mitigate the harmonics is presented with different wind speeds. The proposed modified GSC control technique is simulated for grid-connected 2.6 MW DFIG based wind energy conversion system (WECS) in MATLAB Simulink environment.

2018 ◽  
Vol 7 (2.24) ◽  
pp. 545
Author(s):  
R Sriranjani ◽  
S Jayalalitha

This paper deals with the harmonic mitigation and reactive power compensation using Shunt Active filter. The performance of the Shunt active filter depends on the design and current control technique for generating a reference current. The design of the filter involves the iterative procedure for choosing the filter components so that it compensates the harmonics and reactive power for maximum load condition. The current controller method adopted for indirect current control technique where the reference signal is similar to the supply current signal. The Adaptive filter used in current controller mitigates harmonics and reactive power and voltage control loop of SAF balancing the active power between the load and supply unit. The learning rate is fixed by repeated simulation. The SAF active filter is tested in four load condition ie., nonlinear load(37% Total Harmonic Distortion(THD)),highly nonlinear load(>100% THD), linear load(<8% THD, power factor(pf) <0.5) and both nonlinear and linear load(37% THD and 0.7 pf). The study is carried out in MATLAB Simulink and the results are presented.  


2019 ◽  
Vol 1 (3) ◽  
pp. 40-47
Author(s):  
Mohamed jaidu Mansoor ◽  
Ranjith Kumar

Elevation of power electronics technology, converter are the main causes for power quality issues, because of their high switching characteristics.so to reduce the harmonics injected by the nonlinear load, the filters are play a major role to improve a power quality improvement, particularly shunt active filter is more reliable for reduce a harmonic in power system network. This novel technique proposed for design a shunt active filter with solar photovoltaic array integrated into nonlinear load using a Point of Common Coupling (PCC) technique. Zero crossing detection technique are used to extract the magnitude of a fundamental active components of distorted load currents. The estimation of harmonic isolator and current compensation are controlled by Field Programmable Gate Array (FPGA) controller, different types of compensation techniques are used in this work Synchronous reference frame theory, instantaneous reactive power theory (PQ) and hysteresis current control technique. These techniques enable extraction of active power, regulates a load voltage and maintain a phasor sequence at PCC under the voltage sag and swell. Simulation is carried out by MATLAB/SIMULINK for different compensations techniques and Total Harmonics Distortion (THD) values are tabulated.


Author(s):  
Shaik Nagul Sharif and Sri Latha Veerla

The power quality problem in the power system is increased with the use of non-linear devices. Due to the use of non-linear devices like power electronic converters, there is an increase in harmonic content in the source current. Due to this there is an increase in the losses, instability and poor voltage waveform. To mitigate the harmonics and provide the reactive power compensation, we use filters. There are different filters used in the power system. Passive filters provide limited compensation, so active filters can be used for variable compensation. In this work, a shunt active filter has been made adaptive using a Variable Leaky Least Mean Square (VLLMS) based controller. Proposed adaptive controller can be able to compensate for harmonic currents, power factor and nonlinear load unbalance. DC capacitor voltage has been regulated at a desired level using a PI controller and a self-charging circuit technique. But, this scheme as two disadvantages such as, tuning issues of current controller pre-requisites the traditional PI controller, which is controlled by intelligent based Hybrid-Fuzzy-Logic controller for achieving good performance features. The design concept of proposed intelligent Hybrid-Fuzzy controller for shunt active filter has been verified through simulation analysis and results are presented with proper comparisons.


2014 ◽  
Vol 666 ◽  
pp. 53-58
Author(s):  
Mohamed Muftah Saleem

This paper presents a new control method of a parallel active power filters based on improved harmonic isolation with hardware implementation. The harmonic isolator is based on High Selectivity Filters (it can be tuned at any frequency) and the current control technique consists in a modulated hysteresis current controller. This active filter is intended for harmonic compensation of a diode rectifier feeding a RL load. The study of the active filter control is divided in two parts. The first part deals with the harmonic isolator which generates the harmonic reference currents and is implemented into a DSPACE DS1104 prototyping card. The second part focuses on the generation of the switching pattern of the IGBTs of the inverter by the modulated hysteresis current controller, implemented into an analogue card. The use of High Selectivity Filters instead of classical extraction filters allows extracting directly the voltage and current fundamental components in the α-β axis at high performances. The effectiveness of the new proposed method is verified by computer simulation and by experimental study.


2020 ◽  
Vol 8 (6) ◽  
pp. 1004-1012

The power quality problem in the power system is increased with the use of non-linear devices. Due to the use of non-linear devices like power electronic converters, there is an increase in harmonic content in the source current. Due to this there is an increase in the losses, instability and poor voltage waveform. To mitigate the harmonics and provide the reactive power compensation, we use filters. There are different filters used in the power system. Passive filters provide limited compensation, so active filters can be used for variable compensation. In this paper, a shunt active filter has been made adaptive using a Variable Leaky Least Mean Square (VLLMS) based controller. Proposed adaptive controller can be able to compensate for harmonic currents, power factor and nonlinear load unbalance. DC capacitor voltage has been regulated at a desired level using a PI controller and a self-charging circuit technique. But, this scheme has two disadvantages such as, tuning issues of current controller pre-requisites the traditional PI controller, which is controlled by intelligent based Fuzzy-Logic controller for achieving good performance features. The design concept of proposed intelligent Fuzzy controller for shunt active filter has been verified through simulation analysis and results are presented with proper comparisons.


Sign in / Sign up

Export Citation Format

Share Document