scholarly journals Evaluation of prediction models applied to the soil-water characteristic curve of ideal materials

2020 ◽  
Vol 195 ◽  
pp. 02024
Author(s):  
Roberto Dutra Alves ◽  
Gilson de F. N. Gitirana ◽  
Sai K. Vanapalli

The development of theoretical and semi-empirical models to study capillary mechanisms and predict the soil-water characteristic curve (SWCC) generally requires the idealization of pore space and pore water, considering simplifying hypotheses. The study of ideal materials comprised of particles with controlled shape and size allows the evaluation of such simplifying hypotheses and the subsequent generalization to actual soils. In this paper, four theoretical and semi-empirical models for the prediction of the SWCC are applied to the prediction of artificial materials comprised of spherical particles. Nineteen grain-size distribution curves, with varying coefficients of uniformity are considered. The dataset is comprised of materials previously published and additional tests carried out by the authors, under highly controlled conditions. The analyses allowed the evaluation of the effect of grain-size distribution curve and shape of the particles. The limitations and advantages of each prediction model was investigated, and a detailed comparison is presented, guiding future implementations of improved models.

2002 ◽  
Vol 39 (5) ◽  
pp. 1103-1117 ◽  
Author(s):  
Murray D Fredlund ◽  
G Ward Wilson ◽  
Delwyn G Fredlund

The implementation of unsaturated soil mechanics into engineering practice is dependent, to a large extent, upon an ability to estimate unsaturated soil property functions. The soil-water characteristic curve (SWCC), along with the saturated soil properties, has proven to provide a satisfactory basis for estimating the permeability function and shear strength functions for an unsaturated soil. The volume change functions have not been totally defined nor applied in geotechnical engineering. The objective of this paper is to present a procedure for estimating the SWCC from information on the grain-size distribution and the volume–mass properties of a soil. SWCCs represent a continuous water content versus soil suction relationship. The proposed method provides an approximate means of estimating the desorption curve corresponding to a soil initially slurried near the liquid limit. The effects of stress history, fabric, confining pressure, and hysteresis are not addressed. A database of published data is used to verify the proposed procedure. The database contains independent measurements of the grain-size distribution and the SWCC. The level of fit between the estimated and measured SWCCs is analyzed statistically. The proposed procedure is compared to previously proposed methods for predicting the SWCC from the grain-size distribution. The results show that the proposed procedure is somewhat superior to previous methods.Key words: soil-water characteristic curve, grain-size distribution, volume-mass properties, pedo-transfer function, unsaturated soil property functions.


2000 ◽  
Vol 37 (4) ◽  
pp. 817-827 ◽  
Author(s):  
Murray D Fredlund ◽  
D G Fredlund ◽  
G Ward Wilson

The grain-size distribution is commonly used for soil classification; however, there is also potential to use the grain-size distribution as a basis for estimating soil behaviour. For example, much emphasis has recently been placed on the estimation of the soil-water characteristic curve. Many methods proposed in the literature use the grain-size distribution as a starting point to estimate the soil-water characteristic curve. Two mathematical forms are presented to represent grain-size distribution curves, namely, a unimodal form and a bimodal form. The proposed equations provide methods for accurately representing uniform, well-graded soils, and gap-graded soils. The five-parameter unimodal equation provides a closer fit than previous two-parameter, log-normal equations used to fit uniform and well-graded soils. The unimodal equation also improves representation of the silt- and clay-sized portions of the grain-size distribution curve.Key words: grain-size distribution, sieve analysis, hydrometer analysis, soil classification, probability density function.


1994 ◽  
Vol 31 (4) ◽  
pp. 521-532 ◽  
Author(s):  
D.G. Fredlund ◽  
Anqing Xing

The soil-water characteristic curve can be used to estimate various parameters used to describe unsaturated soil behaviour. A general equation for the soil-water characteristic curve is proposed. A nonlinear, least-squares computer program is used to determine the best-fit parameters for experimental data presented in the literature. The equation is based on the assumption that the shape of the soil-water characteristic curve is dependent upon the pore-size distribution of the soil (i.e., the desaturation is a function of the pore-size distribution). The equation has the form of an integrated frequency distribution curve. The equation provides a good fit for sand, silt, and clay soils over the entire suction range from 0 to 106 kPa. Key words : soil-water characteristic curve, pore-size distribution, nonlinear curve fitting, soil suction, water content.


Sign in / Sign up

Export Citation Format

Share Document