scholarly journals Oil spill detection in the east of Sri Lanka with Sentinel-1 SAR

2020 ◽  
Vol 211 ◽  
pp. 02013
Author(s):  
W. Kamal M. Mahindapala

In September 2020, two major fires broke out in a large crude oil tanker in Sri Lanka’s maritime zones. An island with a vast sea area in the Indian Ocean, Sri Lanka, is prone to vessel sourced pollution. Crude oil can have a damaging impact on the environment, and therefore tracking the spill in the water is essential. Spaceborne sensors support monitoring oil pollution; however, optical sensors need clear skies for observation. The detection of pollution caused by vessels; in Sri Lanka’s maritime zones has previously been investigated by the author. This study examines the data collected by the Sentinel-1 satellite, whose sensing corresponds to the oil spill event, manually and using algorithms to detect the presence of oil spills. Two detected oil spill areas were measured to be 0.6 km and 1.4 km long. Further, in this study, the SAR sensor’s vertical signal transmission and reception mode produced acceptable results in detecting the spills and the vessel. Sentinel-1 SAR data is essential, in this case, to detect the presence of the oil spills and the vessels.

Author(s):  
Khalid Sayed ◽  
Lavania Baloo ◽  
Naresh Kumar Sharma

A crude oil spill is a common issue during offshore oil drilling, transport and transfer to onshore. Second, the production of petroleum refinery effluent is known to cause pollution due to its toxic effluent discharge. Sea habitats and onshore soil biota are affected by total petroleum hydrocarbons (TPH) as a pollutant in their natural environment. Crude oil pollution in seawater, estuaries and beaches requires an efficient process of cleaning. To remove crude oil pollutants from seawater, various physicochemical and biological treatment methods have been applied worldwide. A biological treatment method using bacteria, fungi and algae has recently gained a lot of attention due to its efficiency and lower cost. This review introduces various studies related to the bioremediation of crude oil, TPH and related petroleum products by bioaugmentation and biostimulation or both together. Bioremediation studies mentioned in this paper can be used for treatment such as emulsified residual spilled oil in seawater with floating oil spill containment booms as an enclosed basin such as a bioreactor, for petroleum hydrocarbons as a pollutant that will help environmental researchers solve these problems and completely clean-up oil spills in seawater.


1989 ◽  
Vol 1989 (1) ◽  
pp. 215-219
Author(s):  
P. B. Ryan ◽  
D. J. S. Brown

ABSTRACT Oil spill contingency planning is concerned with the organization of preplanned responses to anticipated oil pollution emergencies in defined geographical areas. A major factor that must be considered when drafting any contingency plan is the support that can be expected from a variety of sources in times of emergency. Oil spills vary in both their magnitude and complexity and so do the responses to such incidents. It follows, therefore, that there is a tiered structure of oil spill contingency planning and response and that there is a corresponding tiering of sources of support. This paper identifies the various tiers of oil spill planning and response and reviews the external support relevant to each tier. The discussion base of this paper relates particularly to the ROPME sea area as defined herein but many of the observations will apply to other regions of the world where similar situations may be encountered.


Author(s):  
Emilio D’Ugo ◽  
Milena Bruno ◽  
Arghya Mukherjee ◽  
Dhrubajyoti Chattopadhyay ◽  
Roberto Giuseppetti ◽  
...  

AbstractMicrobiomes of freshwater basins intended for human use remain poorly studied, with very little known about the microbial response to in situ oil spills. Lake Pertusillo is an artificial freshwater reservoir in Basilicata, Italy, and serves as the primary source of drinking water for more than one and a half million people in the region. Notably, it is located in close proximity to one of the largest oil extraction plants in Europe. The lake suffered a major oil spill in 2017, where approximately 400 tons of crude oil spilled into the lake; importantly, the pollution event provided a rare opportunity to study how the lacustrine microbiome responds to petroleum hydrocarbon contamination. Water samples were collected from Lake Pertusillo 10 months prior to and 3 months after the accident. The presence of hydrocarbons was verified and the taxonomic and functional aspects of the lake microbiome were assessed. The analysis revealed specialized successional patterns of lake microbial communities that were potentially capable of degrading complex, recalcitrant hydrocarbons, including aromatic, chloroaromatic, nitroaromatic, and sulfur containing aromatic hydrocarbons. Our findings indicated that changes in the freshwater microbial community were associated with the oil pollution event, where microbial patterns identified in the lacustrine microbiome 3 months after the oil spill were representative of its hydrocarbonoclastic potential and may serve as effective proxies for lacustrine oil pollution.


2015 ◽  
Vol 1 (5) ◽  
pp. e1400265 ◽  
Author(s):  
Deeksha Gupta ◽  
Bivas Sarker ◽  
Keith Thadikaran ◽  
Vijay John ◽  
Charles Maldarelli ◽  
...  

Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as “chemical herder” is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air–sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice.


1978 ◽  
Vol 35 (5) ◽  
pp. 510-520 ◽  
Author(s):  
John M. Teal ◽  
Kathryn Burns ◽  
John Farrington

We have analyzed the two- and three-ring aromatic hydrocarbons from the Wild Harbor oil spill in September 1969 and the Winsor Cove oil spill in October 1974, in intertidal marsh sediments, using glass capillary gas-chromatographic and mass-fragmentographic analyses. Naphthalenes with 0–3 alkyl substitutions and phenanthrenes with 0–2 substitutions decreased in concentration with time in surface sediments. The more substituted aromatics decreased relatively less and in some cases actually increased in absolute concentration. The changes in composition of the aromatic fraction have potential consequences for the ecosystem and provide insight into geochemical processes of oil weathering. Key words: oil pollution, aromatic hydrocarbons; gas chromatography; gas chromatography–mass spectrometry; geochemistry; marsh; sediments; oil spills


2019 ◽  
Vol 91 (4) ◽  
pp. 648-653
Author(s):  
Aleksandrs Urbahs ◽  
Vladislavs Zavtkevics

Purpose This paper aims to analyze the application of remotely piloted aircraft (RPA) for remote oil spill sensing. Design/methodology/approach This paper is an analysis of RPA strong points. Findings To increase the accuracy and eliminate potentially false contamination detection, which can be caused by external factors, an oil thickness measurement algorithm is used with the help of the multispectral imaging that provides high accuracy and is versatile for any areas of water and various meteorological and atmospheric conditions. Research limitations/implications SWOT analysis of implementation of RPA for remote sensing of oil spills. Practical implications The use of RPA will improve the remote sensing of oil spills. Social implications The concept of oil spills monitoring needs to be developed for quality data collection, oil pollution control and emergency response. Originality/value The research covers the development of a method and design of a device intended for taking samples and determining the presence of oil contamination in an aquatorium area; the procedure includes taking a sample from the water surface, preparing it for transportation and delivering the sample to a designated location by using the RPA. The objective is to carry out the analysis of remote oil spill sensing using RPA. The RPA provides a reliable sensing of oil pollution with significant advantages over other existing methods. The objective is to analyze the use of RPA employing all of their strong points. In this paper, technical aspects of sensors are analyzed, as well as their advantages and limitations.


1987 ◽  
Vol 1987 (1) ◽  
pp. 9-13
Author(s):  
P. Bernard Ryan ◽  
Derek J. S.

ABSTRACT The ROPME sea area as defined in this paper is the scene of some of the world's most intensive offshore oil exploration and production and the associated crude oil refining and tanker terminaling for oil exportation. The potential for oil pollution in the area is high, with its confined nature making it especially vulnerable to the effects of oil pollution. Awareness of this problem is well developed in the region in both government and industry, and good progress has been made in recent years toward preparing for the big oil spill which has so far not materialized, but which most experts consider inevitable at some time. Two distinct groups share the concern for oil pollution. The oil industry has well over 40 companies active in the area in some way. Many of these have a 15 year history of cooperation in oil spill response and continue to play a full role in protecting the environment from the adverse effects of oil pollution. More recently, nations bordering the area have taken an active interest in the problem and have demonstrated an impressive record of commitment and action over the past five or six years. While government and industry have maintained their separate identities, a good working relationship exists between them, and there is good information exchange and practical cooperation between the two groups, most especially at the national level. Future years should see this trend develop even further. A very impressive arsenal of oil pollution response equipment has been built up in the sea area since two major oil spill incidents in 1980. What is especially noticeable now is the proportion of this equipment that is owned and operated directly by the government agencies. This stands in marked contrast to the situation in 1980. In addition to the equipment resources available, the pool of personnel trained in oil spill response technology and methods is rapidly expanding as a result of seminars, workshops, and training courses that are being organized on a regular basis. The development of national and regional legislation to control the main sources of man-made pollution, for example, from tanker operations and offshore exploration and production, is in a very active stage and the oil industry is expected to have clear operational guidelines within the next few years.


1973 ◽  
Vol 1973 (1) ◽  
pp. 39-43 ◽  
Author(s):  
E. W. Wellbaum

ABSTRACT Oil spills only occur after the start-up of a facility but oil spill prevention for a pipeline-terminal-tanker complex begins with route selection and continues through design, construction, personnel training, operation and maintenance. The trans-Alaska pipeline project has faced all of the usual, and some unusual, problems which needed solutions to give maximum assurance that oil spills would not occur during the operating life of the facilities. This conference today is considering the prevention of oil spill incidents associated with tanker and pipeline operations, refineries, and transfer and storage terminals. The trans-Alaska pipeline system is concerned with each of these functions of the petroleum industry. Alyeska Pipeline Service Company is responsible for design, construction, operation, and maintenance of the pipeline system which will move crude oil produced on the Alaskan North Slope along a route to Valdez, an ice free port located on an arm of Prince William Sound. At Valdez, the oil will be transferred to ocean going tankers. The project will have at its ultimate design capacity of two million barrels per day:Almost 800 miles of 48-inch pipeline.Twelve pump stations with 650,000 installed HP.Twenty-million barrels of crude oil storage in fifty-two tanks.Five loading berths at a deep water terminal servicing a fleet of tankers ranging in size from 30,000 dwt to 250,000 dwt.Eight crude oil topping plants, manufacturing fuel for pump stations, each with a charge of 10,000 barrels per day.A ballast water treating plant capable of handling up to 800,000 barrels per day of dirty ballast.A 25,000 KW power generation plant.Several dozen mechanical refrigeration plants which will be freezing the ground in Alaska.


1991 ◽  
Vol 1991 (1) ◽  
pp. 677-680 ◽  
Author(s):  
D.D. Evans ◽  
G.W. Mulholland ◽  
J.R. Lawson ◽  
E.J. Tennyson ◽  
M.F. Fingas ◽  
...  

ABSTRACT The Center for Fire Research (CFR) at the National Institute of Standards and Technology (NIST) is conducting research related to safety in offshore drilling and oil spill pollution under joint funding from Minerals Management Service (MMS), U.S. Coast Guard, and the American Petroleum Institute. Technical assistance in measurement has been donated by Environment Canada. This research has focused on examining the phenomena associated with crude oil combustion and the impact of using burning as a spill response method. The process of burning crude oil on water as a means to mitigate oil spills has been investigated with a research effort combining both small-scale experiments and calculations. As a result of these studies, there has been increased understanding of the burning process, including burning rate, heat radiation, smoke emission, smoke composition, and smoke dispersion in the atmosphere. A key to gaining acceptance of burning as a spill response technique is the demonstration that favorable results obtained at laboratory scale can be shown to continue in test burns representing the size of fires expected in actual operations. Field-scale burn tests are being planned and coordinated jointly by MMS, API, USCG, and Environment Canada to document the use of burning technology under conditions simulating actual oil spill cleanup operations. The purpose of this project is to measure the effects of oil spill burning in laboratory and field tests.


Sign in / Sign up

Export Citation Format

Share Document