scholarly journals Study on Application of Solar Energy in Highway

2021 ◽  
Vol 261 ◽  
pp. 01060
Author(s):  
Jianfu Xu ◽  
Zhiqiang Liu ◽  
Haifeng Jiang

In recent years, the construction of large-scale electromechanical facilities and smart roads in the highway network has not only improved the level of operation safety but also generated a huge demand for electric energy, the highway transportation industry has become one of the key energy consumption industries second only to industry and construction. Solar energy has become a kind of green energy that has attracted more and more attention among various new energy sources due to its energy-saving, clean, zero-emission, wide-ranging and safe characteristics. This paper analyzes the distribution of solar photovoltaic resources in China’s highway network; puts forward the solar energy three-dimensional clean energy supply network technology which is suitable for highway scene, fully relying on and optimize the use of road network linear areas such as road surface space, three-dimensional space along the road to develop solar photovoltaic resources. Solar-powered roads, solar photovoltaic slopes, photovoltaic sound barriers, photovoltaic isolation barriers, etc. can be developed along the line, so as to build a three-dimensional road solar clean energy network that combines “points, lines and sections”, so that green and clean energy can be provided to a large number of electricity facilities and equipment along the highway, as well as to surrounding cities and villages, making the highway become the transport network carrying the flow of people and logistics, vehicle-road cooperative intelligent information network and clean energy supply network.


2021 ◽  
pp. 0958305X2110571
Author(s):  
J. Charles Rajesh Kumar ◽  
MA Majid

The 18,000 square kilometers of water reservoirs in India can generate 280 GW of solar power through floating solar photovoltaic plants. The cumulative installed capacity of FSPV is 0.0027 GW, and the country plans to add 10 GW of FSPV to the 227 GW renewable energy target of 2022. The FSPV addition is small related to the entire market for solar energy, but each contribution is appreciated in the renewable energy market. FSPV could be a viable alternative for speeding up solar power deployment in the country and meeting its NDC targets. So far, the country has achieved the world's lowest investment cost for a floating solar installation. Despite the lower costs, generalizations are still premature because FSPV is still in its initial stages of market entry. Continuous innovation and timely adoption of innovative ideas and technology will support India in meeting its solar energy goals and progressing toward a more sustainable future. Governments must establish clear and enforceable policies to assist developers in reducing risks and increasing investor confidence in the sector. Economic and financial feasibility are examined, and various difficulties in technology, design, finances, environment, maintenance, and occupational health that impact the FSPV deployment are discussed. Based on the research, effective and comprehensive FSPV policy suggestions are included to support establishing an appropriate market, fostering competition and innovation, and attracting large-scale investment. This paper aims to stimulate interest among various policy developers, energy suppliers, industrial designers, ergonomists, project developers, manufacturers, health and safety professionals, executing agencies, training entities, and investment institutions of the FSPV plant to implement effective governance planning and help them to participate in their ways to assure sustainable growth.



1999 ◽  
Vol 382 ◽  
pp. 307-329 ◽  
Author(s):  
JUDITH K. FOSS ◽  
K. B. M. Q. ZAMAN

The large- and small-scale vortical motions produced by ‘delta tabs’ in a two-stream shear layer have been studied experimentally. An increase in mixing was observed when the base of the triangular shaped tab was affixed to the trailing edge of the splitter plate and the apex was pitched at some angle with respect to the flow axis. Such an arrangement produced a pair of counter-rotating streamwise vortices. Hot-wire measurements detailed the velocity, time-averaged vorticity (Ωx) and small-scale turbulence features in the three-dimensional space downstream of the tabs. The small-scale structures, whose scale corresponds to that of the peak in the dissipation spectrum, were identified and counted using the peak-valley-counting technique. The optimal pitch angle, θ, for a single tab and the optimal spanwise spacing, S, for a multiple tab array were identified. Since the goal was to increase mixing, the optimal tab configuration was determined from two properties of the flow field: (i) the large-scale motions with the maximum Ωx, and (ii) the largest number of small-scale motions in a given time period. The peak streamwise vorticity magnitude [mid ]Ωx−max[mid ] was found to have a unique relationship with the tab pitch angle. Furthermore, for all cases examined, the overall small-scale population was found to correlate directly with [mid ]Ωx−max[mid ]. Both quantities peaked at θ≈±45°. It is interesting to note that the peak magnitude of the corresponding circulation in the cross-sectional plane occurred for θ≈±90°. For an array of tabs, the two quantities also depended on the tab spacing. An array of contiguous tabs acted as a solid deflector producing the weakest streamwise vortices and the least small-scale population. For the measurement range covered, the optimal spacing was found to be S≈1.5 tab widths.



Author(s):  
Ahmad Fudholi ◽  
Abrar Ridwan ◽  
Rado Yendra ◽  
Ari Pani Desvina ◽  
Hartono Hartono ◽  
...  

<span lang="EN-US">The most important benefit of solar energy is renewable and low pollutant source of energy (clean energy). Solar energy technology and research are developing fast and much of the technology needed for these applications in industry and agricultures is already available. Solar drying technology (SDT) is one of the most attractive and promising applications of solar energy technology. In this paper, the various performances of SDTs in Indonesia are summarized with details. Generally, the cabinet-type and tunnel-type SDTs are remarkably well suited to drying small quantities of vegetables and fruit on the household scale. Greenhouse and hybrid SDTs are suitable for use on a large scale by industries.</span>



Author(s):  
Yinglei Teng ◽  
Yuanyuan Cao ◽  
Mengting Liu ◽  
Richard Yu ◽  
Victor C. M. Leung


2019 ◽  
Vol 20 (11) ◽  
pp. 2203-2214 ◽  
Author(s):  
Hoang Tran ◽  
Phu Nguyen ◽  
Mohammed Ombadi ◽  
Kuolin Hsu ◽  
Soroosh Sorooshian ◽  
...  

Abstract Flood mapping from satellites provides large-scale observations of flood events, but cloud obstruction in satellite optical sensors limits its practical usability. In this study, we implemented the Variational Interpolation (VI) algorithm to remove clouds from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) Snow-Covered Area (SCA) products. The VI algorithm estimated states of cloud-hindered pixels by constructing three-dimensional space–time surfaces based on assumptions of snow persistence. The resulting cloud-free flood maps, while maintaining the temporal resolution of the original MODIS product, showed an improvement of nearly 70% in average probability of detection (POD) (from 0.29 to 0.49) when validated with flood maps derived from Landsat-8 imagery. The second part of this study utilized the cloud-free flood maps for calibration of a hydrologic model to improve simulation of flood inundation maps. The results demonstrated the utility of the cloud-free maps, as simulated inundation maps had average POD, false alarm ratio (FAR), and Hanssen–Kuipers (HK) skill score of 0.87, 0.49, and 0.84, respectively, compared to POD, FAR, and HK of 0.70, 0.61, and 0.67 when original maps were used for calibration.



Land ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 100 ◽  
Author(s):  
Ryser

The Moroccan Agency for Sustainable Energy (MASEN) established one of the largest solar energy projects in the world through a public–private partnership. It is on communal land previously owned by a Moroccan Amazigh (Berber) clan in the Ghessate rural council area, 10 km away from Ouarzazate. The land for the energy project comprises a surface area of more than 3000 hectares. This large-scale land acquisition has led to the loss of access to common-pool resources (land, water, and plants), which were formerly managed by local common property institutions, due to its enclosure, and the areas themselves. This paper outlines how the framing of the low value of land by national elites, the state administration, MASEN, and the subsequent discourses of development, act as an anti-politics machine to hide the loss of land and land-related common-pool resources, and thus an attack on resilience—we call it in our scientific discipline a process of ‘resilience grabbing’, especially for women. As a form of compensation for the land losses, economic livelihood initiatives have been introduced for local people based on the funds from the sale of the land and revenue from the solar energy project Noor Ouarzazate. The loss of land representing the ‘old’ commons is—in the official discourse—legitimated by what the government and the parastatal company call the development-related ‘fruits of growth’, and should serve as ‘new forms of commons’ to the local communities. The investment therefore acts as a catalyst through which natural resources (land, water, and plants) are institutionally transformed into new monetary resources that local actors are said to be able to access, under specific conditions, to sustain their livelihood. There are, however, pertinent questions of access (i.e., inclusion and exclusion), regulation, and equality of opportunities for meeting the different livelihood conditions previously supported by the ‘old’ commons.



2004 ◽  
Vol 24 (20) ◽  
pp. 9102-9123 ◽  
Author(s):  
Shaohui Huang ◽  
Larry Lifshitz ◽  
Varsha Patki-Kamath ◽  
Richard Tuft ◽  
Kevin Fogarty ◽  
...  

ABSTRACT A major regulator of endocytosis and cortical F-actin is thought to be phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] present in plasma membranes. Here we report that in 3T3-L1 adipocytes, clathrin-coated membrane retrieval and dense concentrations of polymerized actin occur in restricted zones of high endocytic activity. Ultrafast-acquisition and superresolution deconvolution microscopy of cultured adipocytes expressing an enhanced green fluorescent protein- or enhanced cyan fluorescent protein (ECFP)-tagged phospholipase Cδ1 (PLCδ1) pleckstrin homology (PH) domain reveals that these zones spatially coincide with large-scale PtdIns(4,5)P2-rich plasma membrane patches (PRMPs). PRMPs exhibit lateral dimensions exceeding several micrometers, are relatively stationary, and display extensive local membrane folding that concentrates PtdIns(4,5)P2 in three-dimensional space. In addition, a higher concentration of PtdIns(4,5)P2 in the membranes of PRMPs than in other regions of the plasma membrane can be detected by quantitative fluorescence microscopy. Vesicular structures containing both clathrin heavy chains and PtdIns(4,5)P2 are revealed immediately beneath PRMPs, as is dense F actin. Blockade of PtdIns(4,5)P2 function in PRMPs by high expression of the ECFP-tagged PLCδ1 PH domain inhibits transferrin endocytosis and reduces the abundance of cortical F-actin. Membrane ruffles induced by the expression of unconventional myosin 1c were also found to localize at PRMPs. These results are consistent with the hypothesis that PRMPs organize active PtdIns(4,5)P2 signaling zones in the adipocyte plasma membrane that in turn control regulators of endocytosis, actin dynamics, and membrane ruffling.



2018 ◽  
Vol 9 (2) ◽  
pp. 331-337
Author(s):  
WeiBo Sun ◽  
Yan Wang ◽  
LeiMing Zhang ◽  
YanDa Liu ◽  
Xin Wang

Abstract Coal mining will damage water resources, based on the analysis of mine water resources in the western region of China. Using mine water as the medium, a coal-water-wind (solar) energy comprehensive green energy exploitation system is established. Mine water is stored in underground spaces formed by mining, and mine water purification is achieved by fractured rock and goaf. Using multistage underground reservoirs, through pumping to store energy, the unstable solar and wind energy is converted into a stable output power. The possibility of using the mine water as a medium to use the clean energy, and the prospect of the utilization of mine water resources in the future, is discussed.



Author(s):  
Pushpendra Arya

In today’s world we are going towards the major share of renewable energy to reduce the effect Green House Gases (GHG) in the atmosphere. The limitation of energy sources which produces clean energy, the rise in the pollution in the environment, and programs initiated by the Indian Government have encouraged lots of open field researches on Solar Photovoltaic Systems or Solar Energy Systems. As producing the clean and renewable energy is main component of energy sector, solar photovoltaic could be considered as an alternative in various regions. Although Solar Photovoltaic does have different advantages and can be used for various purposes, but also there are several challenges for it. This paper took a whole overview of the advantages and uses of Solar Photovoltaic and barriers in their adaptation/opportunities.



2021 ◽  
Author(s):  
◽  
Daniel Akinyele

<p>This thesis proposes Solar Photovoltaic Microgrids (SPMs) for six different remote communities in Nigeria, one from each of the country’s geopolitical zones. The research analysis is presented based on the basic load demand of 24 households within each of the selected communities. The arrangements of the houses are obtained from the community’s layout provided by a building consortium.  The study first presents the intended users’ basic energy needs and their daily energy usage. The available solar energy resources of the different locations are also carefully examined, in relation to their disparities, intermittent characteristics and seasonal variations. The research also emphasises the possibility of load growth. With such consideration, more practical electrification solutions can be achieved. The study considers users’ electricity demand growth of 25 to 75% of the baseline value of 175 kWh/d.  The photovoltaic microgrid systems are modelled in the DIgSILENT PowerFactory environment. The lengths of the lines running from the electric power plant to the households are obtained from the community’s layout. This information is included in the model, coupled with the solar energy data and the technical configurations of the PV arrays.  The effectiveness of the proposed SPMs is evaluated by first comparing the techno-economic and environmental assessment results with those of a diesel power plant. This is also done by comparing the results with some existing related outputs in the literature, which are reported for solar photovoltaic systems in different regions of the world.  The research results indicate that it is possible to develop practical, cost-effective and reliable clean energy systems for the specified communities based on solar photovoltaic technology. The SPMs have the capability to compete with conventional electricity options – diesel/petrol generators with which some households are already familiar. Furthermore, even though the diesel plant’s initial capital cost is as low as ~ 10 - 17% of those of the SPMs, its life cycle costs are ~ 2 - 2.3 times the life cycle costs of the proposed SPMs for the six locations. Over the 25-year project life span, the SPMs clearly provide a significant economic benefit.  The battery average SoC probability distribution values of >98% above the minimum set point of 30% were also achieved. The reliability indices, i.e. LOEP of < 5%, availability of > 95% achieved in this study for the SPMs, are also comparable with the existing results in the literature. The SPM’s estimated emission rate is ~57 gCO₂/kWh, which is lower than the values of 576 - 695 gCO₂/kWh obtained for diesel systems. The SPM system’s GWP ranges from 3,409 to 7,945 kgCO₂-eq. Also, the system’s EPBTs and EROIs range from 1.11 to 1.6 years and 15.63 to 22.52, respectively, of the specified locations.  The proposed SPM model is based on the global engineering standards and best practices and has very considerable practical applications. These can provide a reference point for governments, policymakers, researchers, designers, planners, and other stakeholders of interest in conceptualising and proceeding with the design, planning, and development of new electrification systems for remote communities.</p>



Sign in / Sign up

Export Citation Format

Share Document