scholarly journals Study on bonding properties between arc surfacing layers and 1045 steel substrate using pull-lift test method

2021 ◽  
Vol 268 ◽  
pp. 01072
Author(s):  
Xiuming Cheng ◽  
Wumu Liu ◽  
Fei Huang ◽  
Zhenan Ren ◽  
Xinge Zhang

Three kinds of surfacing layers of the austenitic steel, niobium alloyed steel and hypereutectic high chromium alloyed cast iron were prepared on 1045 steel substrate by arc surfacing process with self-shielding flux-cored wires. The bonding strength between surfacing layers and the substrate was tested by pull-lift test method. The experimental results show that the bonding strength between austenitic steel surfacing layer and the substrate is the highest up to 549.1 MPa, and the fracture location is near the fusion line with quasi-cleavage fracture characteristic. The bonding strength between the surfacing layer of niobium alloyed steel and the substrate is 314.4 MPa and the fracture mainly occurred at the bottom of the surfacing layer, which also presents quasi-cleavage characteristic. While the bonding strength between hypereutectic high chromium alloyed cast iron surfacing layer and the substrate is as low as 170.7 MPa and the specimen ruptures along the fusion line with brittle fracture characteristic. The bonding properties between surfacing layers and the substrate are directly related to the compositions and microstructures near the fusion line.

2021 ◽  
Vol 303 ◽  
pp. 01005
Author(s):  
Dmitry Lubyanoi ◽  
Evgeny Pudov ◽  
Evgeny Kuzin ◽  
Olga Semenova

The article shows the relevance of the use of alloyed cast iron in mining and metallurgical engineering. The article discusses the technologies for producing naturally alloyed cast iron. For working bodies and friction units of mining machines, such as pumps, coal pumps, hydrocyclones, crushers and mills. The main type of wear for them is abrasive. To increase the wear resistance of cast iron the production of cast iron has not been sufficiently studied yet. Although the use of cast iron in a complex alloyed with manganese, silicon, chromium, titanium and vanadium has been studied. The article studies the influence of manganese, titanium and vanadium on the mechanical properties and performance of machine parts and products of mining and metallurgical production in contact with high-temperature and highly abrasive media. The rational content of titanium and vanadium in gray cast irons is established in the range of 0.05-0.1%, which ensures their heat resistance and increases their wear resistance. The content of these elements can be increased to 0.07-0.12%. Bushings made of this cast iron have the required wear resistance and can increase the operational reliability of the equipment in the conditions of mining and metallurgical production. They also replace non-ferrous metals, as well as products obtained by powder metallurgy methods.


1982 ◽  
Vol 18 (11) ◽  
pp. 544-545
Author(s):  
G. N. Shtyka ◽  
A. V. Borodin ◽  
V. N. Oleinik ◽  
S. N. Primerov

2021 ◽  
Vol 58 (8) ◽  
pp. 507-538
Author(s):  
S. Duwe ◽  
B. Tonn

Abstract For numerous steel grades, detailed descriptions of different etching techniques and etching times for microstructural analysis are available. However, there are only few reference works for low-alloyed cast iron. Particularly for complex microstructures with combined fractions of bainite, ferrite, pearlite, retained austenite, carbides and martensite, there are only few detailed collections. In addition, the effects of the etchants are rarely investigated for the same image section. Therefore, this study will exclusively compare identical microstructural regions and the effect of different etchants on them. Two specific sample areas were selected in a low-alloyed cast iron and the effect of both surface removal etching and tint etching reagents on them was examined under a reflected light optical microscope and a scanning electron microscope. The results of the study have shown that some etchants for complex microstructures are only suitable in case potentially present phases are already known. However, the combined use of two etching solutions in particular, led to a very detailed and highcontrast image, capable of revealing and resolving microstructures with a variety of phases.


Author(s):  
Manfred B. Rockel ◽  
Dietmar Schedlitzky ◽  
Roman Bender

Sign in / Sign up

Export Citation Format

Share Document