scholarly journals Study on simulation mechanics and fatigue performance of steel bridge deck rigid flexible composite pavement

2021 ◽  
Vol 272 ◽  
pp. 02025
Author(s):  
Yinshan Li ◽  
Linlin Liu ◽  
Tianyu Li ◽  
Ruyong Guo ◽  
Chunying Wu

Aiming at the fatigue cracking of steel bridge deck pavement and the shortage of river sand resources, a sea sand RPC pavement scheme was proposed. Taking Quanhe steel box girder bridge as the research background, the simulation model was established by using ANSYS finite element software, and the mechanical simulation analysis of the steel bridge deck sea sand RPC-asphalt pavement composite structure was carried out to determine the most unfavorable load position. A three-point fatigue test was carried out to study the fatigue performance of the structure specimen, and a comparative analysis was made with the river sand RPCasphalt surface composite pavement structure. The results show that the maximum tensile stress and strain of RPC-asphalt pavement appear in the upper middle span of U-shaped stiffener of steel box girder, which are 0.5241MPa and 98.2με, respectively, and the surface of the pavement in this area is prone to crack. The RPC-asphalt surface composite pavement structure has not been damaged after 2 million times of fatigue tests, and has not been damaged after 1 million times of fatigue loading after secondary loading, which indicates that it has better fatigue performance.

Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 484 ◽  
Author(s):  
Yixin Chen ◽  
Pengmin Lv ◽  
Datao Li

The orthotropic steel bridge deck weld structure would easily cause fatigue cracking under the repeated action of vehicle load. This paper took the steel box girder in a bridge as a research object, researched the mechanical properties of the steel plate and the microstructure of the welded joint, then designed the fatigue specimens of the deck plate and did the fatigue test. The Δσ-N curves and stress amplitudes of the weld details of the deck plate with U-rib and diaphragm under different probabilities of survival were obtained. After extended the Δσ-N curves to the long life range, the fatigue damage calculation equation of the detail was proposed, and the cut-off limit under the 50% and 97.7% probability of survival were 81.50 MPa and 53.11 MPa, respectively. Based on the actual vehicle load spectrum and simplified finite element model of the steel box girder section, the stress amplitude of the details of the weld joint was calculated. The calculation result shows that the maximum stress amplitude of the concerned point was 38.29 MPa, less than the cut-off limit. It means that the fatigue strength of the details of the weld joint meet the requirement of the fatigue design.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Leilei Chen ◽  
Zhendong Qian ◽  
Daoxie Chen ◽  
Ya Wei

In order to extend the service life of the steel bridge deck pavement, a long-life steel bridge deck pavement (LLSBDP) was put forward referring to the concept of long-life asphalt pavement. First, the requirements of the LLSBDP were given, based on which, an LLSBDP structure “EAC + SMA” was proposed. Second, a numerical analysis was performed to evaluate the stress status of the “EAC + SMA” structure. Third, an experimental study was conducted to assess the performance of the pavement material and the pavement structure. Meanwhile, for comparison, the performances of traditional steel bridge deck pavement structure “EAC + EAC” were also studied in the numerical and experimental program. The results showed that, with periodical rehabilitation or reconstruction of the SMA surface layer, the EAC base layer can last for a long life without structural distresses. The proposed structure can meet the requirements of LLSBDP and can be used to extend the service life of the steel bridge deck pavement.


Author(s):  
Matti Kabos ◽  
Edwin Thie ◽  
Conor Lavery

As part of a major renovation programme of critical highway infrastructure in the Netherlands, the Tacitus Bridge at Ewijk, a 1055-metre-long orthotropic steel box girder deck of ten spans, with a main cable-stayed span of 270 metres, has undergone extensive strengthening and refurbishment. Due to the presence of micro-fissure defects identified in the existing lock coiled stay cables and an increase in permanent load on the bridge deck resulting from the addition of a high strength concrete overlay acting compositely with the orthotropic steel deck, it was concluded that the existing stay cables needed replacement. This paper presents the analytical approach developed to verify that the existing stay cables could be removed with no additional temporary supports and the use of advanced non-linear techniques to predict and monitor the performance of the bridge during each step of destressing the existing stay cables and of tensioning the new parallel strand cables.


2018 ◽  
Vol 8 (12) ◽  
pp. 2531 ◽  
Author(s):  
Sang Park ◽  
Junwon Park ◽  
Bong-Geun Kim ◽  
Sang-Ho Lee

The industry foundation classes (IFC) data model is the most important data schema in ensuring the interoperability of the information generated throughout the lifecycle of facilities. However, because the current IFC model is focused on buildings, there are limitations when this model is applied to bridge structures. This paper proposes a method that enables the information modeling of steel box girder bridges based on the current IFC. To select the required and core items, we classify the components of a steel box girder bridge by the design stage with reference to engineering documents. To generate functional meanings of each bridge component, we develop the rules of the unique identifier and information reassignment, and then apply a semi-automated naming algorithm. The generated bridge information model was used to confirm the functional semantic meanings of individual components, and it was checked whether additional external information, such as carbon emissions, could be linked for specific bridge components. It was observed that information retrieval and extraction for components is possible through a semantic-based query to the generated IFC-based bridge information model.


Sign in / Sign up

Export Citation Format

Share Document