scholarly journals Epoxy and epoxy novolac adhesive binders for structural reinforcement systems of building structures

2021 ◽  
Vol 274 ◽  
pp. 04012
Author(s):  
Irina Starovoitova ◽  
Rustem Nizamiev

Today, along with the conventional materials and technologies for reinforcement of building structures, structural reinforcement systems based on polymer composites are on the rise. A structural reinforcement system consists of reinforcing filler (normally, carbon fiber fabric or cloth) and adhesive binder. This paper investigated the modification of epoxy nobake adhesive binders to provide a higher thermal resistance and mechanical strength. The influence of epoxy novolac resins on the processing and physical mechanical properties of adhesives, thermal resistance is studied. It is found that the substitution of 20-40 % of epoxy resin for epoxy novolac resin in the binder increases tensile strength by 40-50 %, flexural modulus by 20 %, reduces tensile strain, and increases glass transition temperature. From the processing point of view, it is more reasonable to use liquid epoxy novolac resins with a functionality of f=2.5 than semisolid resins with a functionality of f=3.6.

2016 ◽  
Vol 72 (12) ◽  
pp. 244-250 ◽  
Author(s):  
Hisai Ueda ◽  
Wataru Okumura ◽  
Hideyuki Uematsu ◽  
Shuichi Tanoue

e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 316-326
Author(s):  
Bing Wang ◽  
Minxian Shi ◽  
Jie Ding ◽  
Zhixiong Huang

Abstract In this work, octamercapto polyhedral oligomeric silsesquioxane (POSS-8SH) and octaphenol polyhedral oligomeric silsesquioxane (POSS-8Phenol) were successfully synthetized. POSS-8Phenol was added into the synthesis process of liquid thermoset phenolic resin (PR) to obtain POSS-modified phenolic resin (POSS-PR). Chemical structures of POSS-8SH, POSS-8Phenol, and POSS-PR were confirmed by FTIR and 1H-NMR. TG and DTG analysis under different atmosphere showed that char yield of POSS-PR at 1,000°C increased from 58.6% to 65.2% in N2, which in air increased from 2.3% to 26.9% at 700°C. The maximum pyrolysis temperature in air increased from 543°C to 680°C, which meant better anti-oxidation properties. XRD results confirmed both POSS-8Phenol and POSS-PR-generated crystalline SiO2 in air, which could explain the improvement of anti-oxidation properties. SEM showed that the POSS-PR had phase separation during curing process. Finally, carbon fiber fabric-reinforced POSS-PR (C-POSS-PR) was prepared to verify the anti-oxidation properties of POSS-PR.


1993 ◽  
Vol 19 (1) ◽  
pp. 29-31
Author(s):  
Akira NISHIMURA ◽  
Kiyoshi HOMMA ◽  
Junichi MATSUI

Author(s):  
F. Longo ◽  
A. Cascardi ◽  
P. Lassandro ◽  
M. A. Aiello

AbstractAll over the world, a large part of existing buildings is not adequate to satisfy the safety requirement and the thermal comfort criteria. For this reason, the interest in structural and energy retrofitting systems has steadily grown in the last decades. In this scenario, an innovative thermal resistant geopolymer mortar has been developed and used for Inorganic Matrix Composite (IMC) systems aimed to a combined seismic and energy new retrofitting technique. The geopolymer-based IMC is able to ensure competitive mechanical properties with respect to the traditional lime-based IMCs and, at the same time, a significant reduction in thermal conductivity. In this paper, an experimental program is reported considering small-scaled masonry panels with double-side IMC-retrofitting and determining both the in-plane shear strength and the thermal resistance. The experimental shear tests are aimed to compare the mechanical performance of the geopolymer innovative systems with those of the traditional lime-based ones. Moreover, the thermal resistance gain of the innovative solutions was measured and compared with traditional systems. The results evidenced the effectiveness of the proposed technique that significantly improved the performances of masonry walls from both the thermal and the mechanical point of view.


Author(s):  
Xilu Zhao ◽  
Chenghai Kong ◽  
Yang Yang ◽  
Ichiro Hagiwara

Abstract Current vehicle energy absorbers face two problems during a collision in that there is only a 70% collapse in length and there is a high initial peak load. These problems arise because the presently used energy-absorbing column is primitive from the point of view of origami. We developed a column called the Reversed Spiral Origami Structure (RSO), which solves the above two problems. However, in the case of existing technology of the RSO, the molding cost of hydroforming is too expensive for application to a real vehicle structure. We therefore conceive a new structure, named the Reversed Torsion Origami Structure (RTO), which has excellent energy absorption in simulation. We can thus develop a manufacturing system for the RTO cheaply. Excellent results are obtained in a physical experiment. The RTO can replace conventional energy absorbers and is expected to be widely used in not only automobile structures but also building structures.


2017 ◽  
Vol 88 (20) ◽  
pp. 2353-2361 ◽  
Author(s):  
Wei Fan ◽  
Dan-dan Li ◽  
Jia-lu Li ◽  
Juan-zi Li ◽  
Lin-jia Yuan ◽  
...  

To investigate the reinforcement architectures effect on the electromagnetic wave properties of carbon fiber reinforced polymer composites, three-dimensional (3D) interlock woven fabric/epoxy composites, 3D interlock woven fabric with stuffer warp/epoxy composites, and 3D orthogonal woven fabric/epoxy composites were studied by the free-space measurement system. The results showed that the three types of 3D woven carbon fiber fabric/epoxy composites had a slight difference in electromagnetic wave properties and the absorption was their dominant radar absorption mechanism. The electromagnetic wave absorption properties of the three types of composites were more than 90% (below −10 dB) over the 11.2–18 GHz bandwidth, and more than 60% (below −4 dB) over the 8–12 GHz bandwidth. Compared with unidirectional carbon fiber reinforced plastics, the three kinds of 3D woven carbon fiber fabric/epoxy composites exhibited better electromagnetic wave absorption properties over a broadband frequency range of 8–18 GHz. Therefore, the three kinds of 3D woven composite are expected to be used as radar absorption structures due to their excellent mechanical properties and outstanding absorption capacity. The total electromagnetic interference shielding effectiveness of the three types of 3D carbon fiber woven composites are all larger than 46 dB over the 8–12 GHz bandwidth, which is evidence that the three types of 3D carbon fiber woven composites can be used as excellent shielding materials for electromagnetic interference.


2018 ◽  
pp. 709-714
Author(s):  
Yuping Zhang ◽  
Yonghua Shen ◽  
Weiwei Chen ◽  
Huanwu Cheng ◽  
Lu Wang

Sign in / Sign up

Export Citation Format

Share Document