scholarly journals Molecular marking in breeding Brassica oleracea L. for resistance to Xanthomonas campestris pv. campestris

2021 ◽  
Vol 285 ◽  
pp. 03009
Author(s):  
Yuliya Makukha ◽  
Elena Dubina

In the presented study, we have studied polymorphism of 30 microsatellite loci in terms of resistance to black rot (Xanthomonas campestris). Three SSR markers (Ol10-C01, Ol11-H06, BoESSR 726) were identified, showing polymorphism in white cabbage forms with contrasting resistance to black rot. Also, part of the F2 breeding material was analyzed using markers Ol10-C01, Ol11-H06. It was found that they reveal all types of allelic state of genes in a segregating population in accordance with the Mendelian rule of segregation, which makes these markers suitable for further use in studies on the basis of cabbage resistance to black rot.

2020 ◽  
Vol 21 ◽  
pp. 00013
Author(s):  
Yuliya Makukha

The present study revealed the polymorphism of SSR loci by the resistance of white cabbage to black rot in contrasting isogenic samples of white cabbage. 2 informative SSR markers were selected: Ol10-C01 and Ol11-H06 for ranking breeding samples based on resistance to Xanthomonas campestris pv. campestris Dows. The microsatellite marker Ol10-C01 was tested on breeding samples and reveals polymorphism between them; therefore, it can be recommended for practical breeding for programs to develop black rot-resistant hybrids of cabbage, which will solve the problem of import substitution and healthy food (environmentally friendly products, grown without the use of means of chemical protection).


1970 ◽  
Vol 1 (1) ◽  
pp. 1-6 ◽  
Author(s):  
MAU Doullah ◽  
GM Mohsin ◽  
K Ishikawa ◽  
H Hori ◽  
K Okazaki

For quantitative trait loci (QTL) controlling resistance to Xanthomonas campestris pv. Campestris, we constructed linkage map using cleaved amplified plymorphic sequences (CAPS) and sequence-related amplified polymorphism (SRAP) analysis with disease rating of F3 families obtained from a susceptible broccoli and resistant cabbage [Green commet P09 × Reiho P01]. We established inoculation technique. In this technique, leaves from approximately 50-day old F3 plants were inoculated by cutting 1.0 cm at mid vain near the margins. A total of 38 CAPS and 60 SRAP primer pairs were screened to assess parental polymorphism against black rot resistance. Ninety two markers were distributed in 10 linkage groups (LGs) covering 320.5 cM (centimorgan), with average 3.56 cM interval between markers. Two genomic regions on LG 2 and LG 9 were significantly associated with resistance to the disease. The analysis revealed QTLs in the map interval between CAM1 – GSA1 on LG 2 accounting for up to 10% of the phenotypic variation and one QTL in the map interval between F12-R12e – BORED on LG 9 explaining 16% phenotypic variation with LOD score of 3.09. Two additional non-significant QTLs on LG 3 in the interval between CHI – ASB1 (LOD = 2.04) and on LG 7 in the interval between IPI – FLC3 (LOD = 2.25) were also detected for resistance to the disease. The QTLs, which were mapped to LG 2 and LG 9 for the disease, could be useful for marker-assisted selection in resistance breeding. Key words: Linkage map; QTL; Black rot; Resistance; Brassica oleracea  DOI: http://dx.doi.org/10.3329/ijns.v1i1.8591 International Journal of Natural Sciences (2011), 1(1):1-6


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2705
Author(s):  
Lu Lu ◽  
Sokrat G. Monakhos ◽  
Yong Pyo Lim ◽  
So Young Yi

Black rot disease, caused by Xanthomonas campestris pv. campestris (Xcc), results in significant yield losses in Brassica oleracea crops worldwide. To find black rot disease-resistant cabbage lines, we carried out pathogenicity assays using the scissor-clipping method in 94 different B. oleracea lines. By comparing the lesion areas, we selected a relatively resistant line, Black rot Resistance 155 (BR155), and a highly susceptible line, SC31. We compared the two cabbage lines for the Xcc-induced expression pattern of 13 defense-related genes. Among them, the Xcc-induced expression level of PR1 and antioxidant-related genes (SOD, POD, APX, Trx H, and CHI) were more than two times higher in BR155 than SC31. Nitroblue tetrazolium (NBT) and diaminobenzidine tetrahydrochloride (DAB) staining analysis showed that BR155 accumulated less Xcc-induced reactive oxygen species (ROS) than did SC31. In addition, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays showed that BR155 had higher antioxidant activity than SC31. This study, focused on the defense responses of cabbage during the early biotrophic stage of infection, indicated that Xcc-induced ROS might play a role in black rot disease development. We suggest that non-enzymatic antioxidants are important, particularly in the early defense mechanisms of cabbage against Xcc.


Sign in / Sign up

Export Citation Format

Share Document