scholarly journals Deformation measurements of blast loaded plates using digital image correlation and high-speed photography

2010 ◽  
Vol 6 ◽  
pp. 12006 ◽  
Author(s):  
K. Spranghers ◽  
D. Kakogiannis ◽  
J.M. Ndambi ◽  
D. Lecompte ◽  
H. Sol
Author(s):  
Morgan Johansson ◽  
Rasmus Rempling ◽  
Gonzalo S. D. de Ulzurrun ◽  
Carlos Zanuy

<p>This paper studies 2-D high speed photography combined with digital image correlation (DIC) applied to experimental research of reinforced concrete beams at moderate loading rates. The aim of the present research is to understand the influence of 2-D DIC set-up parameters in the results. Drop-weight tests have been completed in 1180 × 100 × 100 mm longitudinally reinforced concrete beams. The study has confirmed results sensitivity to image subdivision and mesh properties. While smaller subdivision sizes allow to obtain results nearby boundaries, being more suitable to study local effects, larger sizes enhance computational cost, increase mesh stability and accuracy. A discussion of key aspects of 2-D DIC for measuring different parameters (such as acceleration, displacements, strains and strain-rate) is presented along this paper.</p>


2011 ◽  
Vol 70 ◽  
pp. 81-86 ◽  
Author(s):  
Fabrice Pierron ◽  
Rachid Cheriguene ◽  
Pascal Forquin ◽  
Raphael Moulart ◽  
Marco Rossi ◽  
...  

This paper compares the technology and the performances of three ultra high speed cameras for full-field deformation measurements with Digital image correlation or the grid method. The three cameras are based on multiple CCD sensors (Cordin 550-62, with rotating mirror or DRS IMACON 200 with gated intensified CCDs) or dedicated chip (Shimadzu HPV). The advantages and limitations of these cameras are critically reviewed.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4726 ◽  
Author(s):  
Bo Dong ◽  
Fancang Zeng ◽  
Bing Pan

A simple and practical full-frame single-camera stereo-digital image correlation (stereo-DIC) technique for three-dimensional (3D) shape, displacement, and deformation measurements is proposed. The technique uses a compact X-cube prism-based color separation device and a color camera to capture images of blue and red colors from different optical paths, and then extracts the surface 3D shape and deformation information of a test sample by processing the captured two sub-channel color images using regular stereo-DIC algorithm. Compared with the existing full-frame single-camera stereo-DICs, the proposed one eliminates the need for a beam splitter and two bandpass filters to capture images, and offers more simple, compact, and easy-to-use optical arrangement. This novel single-camera stereo-DIC technique was validated by a series of baseline experiments involving 3D surface reconstructions, translation tests, and full-field deformation measurements, which provide a new flexible and practical avenue for measuring surface 3D shape and deformation, particularly in microscopic and high-speed applications.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Michael Pinto ◽  
Sachin Gupta ◽  
Arun Shukla

The mechanisms and pressure fields associated with the hydrostatic implosion of glass fiber reinforced polymer (GFRP) tubes with varying reinforcement are investigated using high-speed photography. Experiments are conducted in a large pressure vessel, designed to provide constant hydrostatic pressure throughout collapse. Three-dimensional (3D) digital image correlation (DIC) is used to capture full-field displacements, and dynamic pressure transducers measure the pressure pulse generated by the collapse. Results show that braided GFRP tubes release pressure waves with significantly greater impulse upon collapse as compared to filament-wound tubes, increasing their damage potential.


Sign in / Sign up

Export Citation Format

Share Document