scholarly journals WA105: A Large LAr Double Phase TPC Prototype

2018 ◽  
Vol 174 ◽  
pp. 01009
Author(s):  
Thorsten Lux

For the next generation of long baseline neutrino oscillation experiments detectors with several tens of ktons of detection medium will be needed. Liquid argon (LAr) is ideal for this application since it allows the construction of fully sensitive time projection chambers (TPCs). A mandatory step between the current setups and the final detector for the long baseline experiment is the construction of a large prototype to prove the technical feasibility of the scaling. WA105 with a size of 6×6×6 m3 is this intermediate step for the detector concept of a LAr double phase TPC and will be presented in these proceedings.

Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 22
Author(s):  
Alexander Deisting ◽  
Abigail Waldron ◽  
Edward Atkin ◽  
Gary Barker ◽  
Anastasia Basharina-Freshville ◽  
...  

The measurements of proton–nucleus scattering and high resolution neutrino–nucleus interaction imaging are key in reducing neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at the Royal Holloway University of London and CERN as a first step in the development of a HPTPC that is capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment, such as the Deep Underground Neutrino Experiment. In this paper, we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout using four CCD cameras of signals from 241Am sources.


Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2019 ◽  
Vol 99 (1) ◽  
Author(s):  
R. Acciarri ◽  
C. Adams ◽  
J. Asaadi ◽  
B. Baller ◽  
T. Bolton ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Maury Goodman

The Deep Underground Neutrino Experiment (DUNE) is a worldwide effort to construct a next-generation long-baseline neutrino experiment based at the Fermi National Accelerator Laboratory. It is a merger of previous efforts and other interested parties to build, operate, and exploit a staged 40 kt liquid argon detector at the Sanford Underground Research Facility 1300 km from Fermilab, and a high precision near detector, exposed to a 1.2 MW, tunableνbeam produced by the PIP-II upgrade by 2024, evolving to a power of 2.3 MW by 2030. The neutrino oscillation physics goals and the status of the collaboration and project are summarized in this paper.


2018 ◽  
Vol 1143 ◽  
pp. 012003
Author(s):  
H da Motta ◽  
A A Machado ◽  
L Paulucci ◽  
E Segreto ◽  
A Fauth ◽  
...  

2020 ◽  
Vol 102 (9) ◽  
Author(s):  
W. Castiglioni ◽  
W. Foreman ◽  
B. R. Littlejohn ◽  
M. Malaker ◽  
I. Lepetic ◽  
...  

2021 ◽  
Vol 251 ◽  
pp. 03054 ◽  
Author(s):  
Jeremy Hewes ◽  
Adam Aurisano ◽  
Giuseppe Cerati ◽  
Jim Kowalkowski ◽  
Claire Lee ◽  
...  

This paper presents a graph neural network (GNN) technique for low-level reconstruction of neutrino interactions in a Liquid Argon Time Projection Chamber (LArTPC). GNNs are still a relatively novel technique, and have shown great promise for similar reconstruction tasks in the LHC. In this paper, a multihead attention message passing network is used to classify the relationship between detector hits by labelling graph edges, determining whether hits were produced by the same underlying particle, and if so, the particle type. The trained model is 84% accurate overall, and performs best on the EM shower and muon track classes. The model’s strengths and weaknesses are discussed, and plans for developing this technique further are summarised.


2019 ◽  
Vol 214 ◽  
pp. 01013
Author(s):  
Andrea Borga ◽  
Eric Church ◽  
Frank Filthaut ◽  
Enrico Gamberini ◽  
Jong Paul de ◽  
...  

The liquid argon Time Projection Chamber technique has matured and is now in use by several short-baseline neutrino experiments. This technology will be used in the long-baseline DUNE experiment; however, this experiment represents a large increase in scale, for which the technology needs to be validated explicitly. To this end, both the single-phase and dual-phase implementations of the technology are being tested at CERN in two full-scale (10 × 10 × 10 m3) ProtoDUNE setups. Besides the detector technology, these setups also allow for extensive tests of readout strategies. The Front-End LInk eXchange (FELIX) system was initially developed within the ATLAS collaboration and is based on custom FPGA-based PCIe I/O cards in combination with commodity servers. FELIX will be used in the single-phase ProtoDUNE setup to read the data coming from 2560 anode wires organized in a single Anode Plane Assembly structure. With a sampling rate of 2 MHz, the system must buffer and process an input rate of 74 Gb/s. Event building requests will arrive at a target rate of 25 Hz, and loss-less compression must reduce the data within the requested time windows before it is sent to the experiment’s event building farm. This paper discusses the design of the system as well as first operational experiences.


2020 ◽  
Vol 15 (03) ◽  
pp. C03057-C03057
Author(s):  
L. Romero ◽  
J.M. Cela ◽  
E. Sanchez Garcia ◽  
M. Daniel ◽  
M. de Prado

Sign in / Sign up

Export Citation Format

Share Document