scholarly journals Essentials of the macroscopic-microscopic folded-Yukawa approach and examples of its record in providing nuclear-structure data for simulations

2018 ◽  
Vol 184 ◽  
pp. 01013
Author(s):  
Peter Möller

The macroscopic-microscopic model based on the folded-Yukawa singleparticle potential and a “finite-range” macroscopic model is probably the approach that has provided the most reliable predictions of a large number of nuclear-structure properties for all nuclei between the proton and neutron drip lines. I will describe some basic features of the model and the development philosophy that may be the reason for its success. Examples of quantities modeled within the same model framework are, nuclear masses, ground-state level structure, including spins, ground-state shapes, fission barriers, heavy-ion fusion barriers, sub-barrier fusion cross sections, β-decay half-lives and delayed neutron emission probabilities, shape coexistence, and α-decay Qα energies to name a few. I will show how well it predicted various properties measured after published results. Rather than giving an incomplete model description here I will give a timeline of model development and provide references to typical applications and references that are sufficiently complete that several individuals have written computer codes based on these references, codes whose results have excellent agreement with ours.

2019 ◽  
Vol 100 (7) ◽  
Author(s):  
Marcis Auzinsh ◽  
Andris Berzins ◽  
Dmitry Budker ◽  
Laima Busaite ◽  
Ruvin Ferber ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianbo Li ◽  
Yiping Yao ◽  
Wenjie Tang ◽  
Feng Zhu

Model reuse is an essential means to meet the demand of model development in complex simulation. An effective approach to realize the model reusability is to establish standard model specification including interface specification and representation specification. By standardizing model’s external interfaces, Reusable Component Model Framework (RCMF) achieves the model reusability acting as an interface specification. However, the RCMF model is presently developed just through manual programing. Besides implementing model’s business logic, modeler should also ensure the model strictly following the reusable framework, which is very distracting. And there lacks model description information for instructing model reuse or integration. To address these issues, we first explored an XML-based model description file which completed RCMF as the model representation and then proposed a RCMF model development tool—SuKit. Model description file describes a RCMF model and can be used for regenerating a model and instructing model integration. SuKit can generate a skeleton RCMF model together with a model-customized description file with the configured information. Modeler then just needs to concentrate on the model processing logic. The case study indicates that SuKit has good capability of developing RCMF models and the well-formed description file can be used for model reuse and integration.


1997 ◽  
Vol 56 (6) ◽  
pp. 3242-3247 ◽  
Author(s):  
Raj K. Gupta ◽  
Manoj K. Sharma ◽  
Sarbjit Singh ◽  
Rachid Nouicer ◽  
Christian Beck

2012 ◽  
Vol 85 (6) ◽  
Author(s):  
S. Bottoni ◽  
G. Benzoni ◽  
S. Leoni ◽  
D. Montanari ◽  
A. Bracco ◽  
...  

2017 ◽  
Vol 30 (4) ◽  
pp. 219-226 ◽  
Author(s):  
Jens Jacob Fredriksson ◽  
Pamela Mazzocato ◽  
Rafiq Muhammed ◽  
Carl Savage

It has proven to be a challenge for health care organizations to achieve the Triple Aim. In the business literature, business model frameworks have been used to understand how organizations are aligned to achieve their goals. We conducted a systematic literature review with an explanatory synthesis approach to understand how business model frameworks have been applied in health care. We found a large increase in applications of business model frameworks during the last decade. E-health was the most common context of application. We identified six applications of business model frameworks: business model description, financial assessment, classification based on pre-defined typologies, business model analysis, development, and evaluation. Our synthesis suggests that the choice of business model framework and constituent elements should be informed by the intent and context of application. We see a need for harmonization in the choice of elements in order to increase generalizability, simplify application, and help organizations realize the Triple Aim.


1988 ◽  
Vol 38 (4) ◽  
pp. 1746-1756 ◽  
Author(s):  
B. A. Remington ◽  
M. Blann ◽  
A. Galonsky ◽  
L. Heilbronn ◽  
F. Deak ◽  
...  

2010 ◽  
Vol 61 (4) ◽  
pp. 825-839 ◽  
Author(s):  
H. Hauduc ◽  
L. Rieger ◽  
I. Takács ◽  
A. Héduit ◽  
P. A. Vanrolleghem ◽  
...  

The quality of simulation results can be significantly affected by errors in the published model (typing, inconsistencies, gaps or conceptual errors) and/or in the underlying numerical model description. Seven of the most commonly used activated sludge models have been investigated to point out the typing errors, inconsistencies and gaps in the model publications: ASM1; ASM2d; ASM3; ASM3 + Bio-P; ASM2d + TUD; New General; UCTPHO+. A systematic approach to verify models by tracking typing errors and inconsistencies in model development and software implementation is proposed. Then, stoichiometry and kinetic rate expressions are checked for each model and the errors found are reported in detail. An attached spreadsheet (see http://www.iwaponline.com/wst/06104/0898.pdf) provides corrected matrices with the calculations of all stoichiometric coefficients for the discussed biokinetic models and gives an example of proper continuity checks.


2020 ◽  
Vol 15 ◽  
pp. 196
Author(s):  
T. Gaitanos ◽  
G. Ferini ◽  
M. Colonna ◽  
M. Di Toro ◽  
G. A. Lalazissis ◽  
...  

We present several possibilities offered by nuclear structure, the dynamics of intermediate energy heavy ion collisions and neutron stars to investigate the nuclear matter equation of state (EoS) beyond the ground state. In particular the high density nuclear EoS of asymmetric matter, i.e. the symmetry energy, is discussed.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Hans Ryde

AbstractA chronicle describing the historical context and the development of ideas and experiments leading to the discovery of the back-bending phenomenon in rapidly rotating atomic nuclei some 50 years ago is presented. The moment of inertia of some atomic nuclei increases anomalously at a certain rotational frequency, revealing important clues to our understanding of nuclear structure. I highlight the decisive interactions and contacts between experimentalists and theorists, which created the right environment, allowing for the revelation of an undetected phenomenon in Nature. Finally, I reflect on the key points allowing for the discovery and particularly point to the importance of systematic surveys, which in this case investigated the energy levels in heavy nuclei of a large sample of elements, as well as to the accuracy of the measurements of the ground state levels made at the time.


Sign in / Sign up

Export Citation Format

Share Document