scholarly journals Influence of hydrogenation on magnetoresonance characteristics of nanocomposite (CoFeB)mC100-m films

2018 ◽  
Vol 185 ◽  
pp. 04003
Author(s):  
Sergei Vyzulin ◽  
Alexandr Kevraletin ◽  
Nikolaj Syr’ev

The influence of hydrogenation on the magnetoresonance characteristics of nanocomposite films during synthesis is studied by the method of ferromagnetic resonance (FMR). It is shown that introduction of hydrogen into the working chamber during the synthesis of film nanogranular structures (CoFeB)mC100-m leads to a change in a resonant field, to increase of the absorption line width, to reduction of anisotropy field in the film plane.

2019 ◽  
Vol 5 (1) ◽  
pp. 33-39
Author(s):  
Alexey S. Semenov ◽  
Aleksey G. Nalogin ◽  
Sergey V. Shcherbakov ◽  
Alexander V. Myasnikov ◽  
Igor M. Isaev ◽  
...  

In this work we have considered metrological problems and measurement of magnetic parameters and presented methods of measuring effective magnetic anisotropy field HAeff and ferromagnetic resonance bandwidth ∆H in magnetically uniaxial hexagonal ferrites in the electromagnetic microwave working frequency range. The methods allow measuring HAeff in the 10–23 and 28–40 kE ranges and ∆H in the 0.5–5.0 range. One method (suitable for wavelength measurements in free space in the 3-mm wavelength range) has been implemented for the 78.33–118.1 GHz range. The other method (based on the use of microstrip transmission lines) has been implemented for the 25–67 GHz range. The methods have been tested for polycrystalline specimens of hexagonal barium and strontium ferrites with nominal composition or complex substituted and having high magnetic texture. The measurement results have been compared with those obtained using conventional measurement methods and spherical specimens. Our methods prove to be highly accurate and reliable.


2008 ◽  
Vol 8 (6) ◽  
pp. 2811-2826 ◽  
Author(s):  
G. N. Kakazei ◽  
T. Mewes ◽  
P. E. Wigen ◽  
P. C. Hammel ◽  
A. N. Slavin ◽  
...  

X-band ferromagnetic resonance (FMR) was used to characterize in-plane magnetic anisotropies in rectangular and square arrays of circular nickel and Permalloy microdots. In the case of a rectangular lattice, as interdot distances in one direction decrease, the in-plane uniaxial anisotropy field increases, in good agreement with a simple theory of magnetostatically interacting uniformly magnetized dots. In the case of a square lattice a four-fold anisotropy of the in-plane FMR field Hr was found when the interdot distance a gets comparable to the dot diameter D. This anisotropy, not expected in the case of uniformly magnetized dots, was explained by a non-uniform magnetization m(r) in a dot in response to dipolar forces in the patternedmagnetic structure. It is well described by an iterative solution of a continuous variation procedure. In the case of perpendicular magnetization multiple sharp resonance peaks were observed below the main FMR peak in all the samples, and the relative positions of these peaks were independent of the interdot separations. Quantitative description of the observed multiresonance FMR spectra was given using the dipole-exchange spin wave dispersion equation for a perpendicularly magnetized film where in-plane wave vector is quantized due to the finite dot radius, and the inhomogenetiy of the intradot static demagnetization field in the nonellipsoidal dot is taken into account. It was demonstrated that ferromagnetic resonance force microscopy (FMRFM) can be used to determine both local and global properties of patterned submicron ferromagnetic samples. Local spectroscopy together with the possibility to vary the tip-sample spacing enables the separation of those two contributions to a FMRFM spectrum. The global FMR properties of circular submicron dots determined using magnetic resonance force microscopy are in a good agreement with results obtained using conventional FMR and with theoretical descriptions.


1986 ◽  
Vol 73 ◽  
Author(s):  
G. Kordas

ABSTRACTFerromagnetic resonance (FMR) spectra of an iron-oxide thin film with a thickness of 70 A were recorded between 100 and 410 K at 9.5 GHz after heat treatment at about 500 °C in hydrogen atmosphere. The FMR-signal of this film consisted of two components (A and B) when the film plane was oriented parallel to the external fieTp The intensity of these components is not proportional toT3/2 in the range from 100 to 410 K. The line width of the A-component is determined by inhomogeneities in the magnetic structure. The line width of the B-component may be influenced by the spin-spin relaxation mechanism and skin effect. The temperature behavior of the resonance field of the A- and B-components was tentatively attributed to variation of the local fields with the temperature of measurements.


2020 ◽  
Vol 90 (5) ◽  
pp. 782
Author(s):  
С.В. Щербаков ◽  
А.Г. Налогин ◽  
В.Г. Костишин ◽  
А.С. Семенов ◽  
Н.Е. Адиатулина ◽  
...  

In the work in the frequency range 25 – 67 GHz the temperature changes of the effective magnetic anisotropy field and ferromagnetic resonance linewidth of the samples isotropic and anisotropic hexaferrite SrFe11.2Al0.1Si0.15Ca0.15O19 and anisotropic hexaferrite BaFe10.4Al1.4Si0.15Mn0.1O19 were studied. The samples obtained by ceramic technology with the pressing of the raw blanks in a magnetic field of 10 kOe. The studies were carried out in the temperature range+25 – +85 ºC. It was found that in the specified temperature range, the change in magnetic anisotropy is 9.8 Oe/ºC for barium hexaferrite and 4.2 Oe/ºC for strontium hexaferrite, and the change in ferromagnetic resonance linewidth is 12.2 Oe/ºC for barium hexaferrite and 10 – 12.3 Oe/ºC for strontium hexaferrite.


Sign in / Sign up

Export Citation Format

Share Document