scholarly journals Instabilities of Collective Neutrino Oscillations Induced by Non-standard Neutrino Interactions

2019 ◽  
Vol 201 ◽  
pp. 09006 ◽  
Author(s):  
Oleg Kharlanov ◽  
Pavel Shustov

We study the effect of non-standard neutrino interactions (NSIs) on the growth of instabilities in neutrino energy spectra of a core-collapse supernova for different neutrino intensities and/or types of NSIs, notably including the exotic neutrino magnetic moment. Although it is usually attested that instabilities virtually smear out all potentially observable signatures, we show that, instead, there are regimes in which they act as a magnifying glass, bringing tiny effects to the eye of the observer.

2020 ◽  
Vol 500 (1) ◽  
pp. 319-332
Author(s):  
Hiroki Nagakura

ABSTRACT We present a new method by which to retrieve energy spectrum for all falvours of neutrinos from core-collapse supernova (CCSN). In the retrieval process, we do not assume any analytic formulas to express the energy spectrum of neutrinos but rather take a direct way of spectrum reconstruction from the observed data; the singular value decomposition algorithm with a newly developed adaptive energy-gridding technique is adopted. We employ three independent reaction channels having different flavour sensitivity to neutrinos. Two reaction channels, inverse beta decay on proton and elastic scattering on electrons, from a water Cherenkov detector such as Super-Kamiokande (SK) and Hyper-Kamiokande (HK), and a charged current reaction channel with Argon from the Deep Underground Neutrino Experiment (DUNE) are adopted. Given neutrino oscillation models, we iteratively search the neutrino energy spectra at the CCSN source until they provide the consistent event counts in the three reaction channels. We test the capability of our method by demonstrating the spectrum retrieval to a theoretical neutrino data computed by our recent three-dimensional CCSN simulation. Although the energy spectrum with either electron-type or electron-type antineutrinos at the CCSN source has relatively large error compared to that of other species, the joint analysis with HK + DUNE or SK + DUNE will provide precise energy spectrum of all flavours of neutrinos at the source. Finally, we discuss perspectives for improvements of our method by using neutrino data of other detectors.


2015 ◽  
Vol 24 (09) ◽  
pp. 1541008 ◽  
Author(s):  
Huaiyu Duan

Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.


2010 ◽  
Vol 73 (4) ◽  
pp. 614-624 ◽  
Author(s):  
O. V. Lychkovskiy ◽  
S. I. Blinnikov

2014 ◽  
Vol 569 ◽  
pp. 012059
Author(s):  
Shun Furusawa ◽  
Hiroki Nagakura ◽  
Kohsuke Sumiyoshi ◽  
Shoichi Yamada

2019 ◽  
Vol 489 (2) ◽  
pp. 2227-2246 ◽  
Author(s):  
David Vartanyan ◽  
Adam Burrows ◽  
David Radice

Abstract We provide the time series and angular distributions of the neutrino and gravitational wave emissions of 11 state-of-the-art 3D non-rotating core-collapse supernova models and explore correlations between these signatures and the real-time dynamics of the shock and the proto-neutron star (PNS) core. The neutrino emissions are roughly isotropic on average, with instantaneous excursions about the mean inferred luminosity of as much as ±20 per cent. The deviation from isotropy is least for the ‘νμ’-type neutrinos and the lowest mass progenitors. Instantaneous temporal luminosity variations along a given direction for exploding models average ∼2–4 per cent, but can be as high as ∼10 per cent. For non-exploding models, they can achieve ∼25 per cent. The temporal variations in the neutrino emissions correlate with the temporal and angular variations in the mass accretion rate. We witness the lepton-number emission self-sustained asymmetry (LESA) phenomenon in all our models and find that the vector direction of the LESA dipole and that of the inner Ye distribution are highly correlated. For our entire set of 3D models, we find strong connections between the cumulative neutrino energy losses, the radius of the proto-neutron star, and the f-mode frequency of the gravitational wave emissions. When physically normalized, the progenitor-to-progenitor variation in any of these quantities is no more than ∼10 per cent. Moreover, the reduced f-mode frequency is independent of time after bounce to better than ∼10 per cent. Therefore, simultaneous measurement of gravitational waves and neutrinos from a given supernova event can be used synergistically to extract real physical quantities of the supernova core.


2018 ◽  
Vol 178 ◽  
pp. 04005
Author(s):  
G. Wendell Misch ◽  
Yang Sun ◽  
George Fuller

Neutrinos are the principle carriers of energy in massive stars, beginning from core carbon burning and continuing through core collapse and after the core bounce. In fact, it may be possible to detect neutrinos from nearby pre-supernova stars. Therefore, it is of great interest to understand the neutrino energy spectra from these stars. Leading up to core collapse, beginning around core silicon burning, nuclei become dominant producers of neutrinos, particularly at high neutrino energy, so a systematic study of nuclear neutrino spectra is desirable. We have done such a study, and we present our sd-shell model calculations of nuclear neutrino energy spectra for nuclei in the mass number range A = 21 – 35. Our study includes neutrinos produced by charged lepton capture, charged lepton emission, and neutral current nuclear deexcitation. Previous authors have tabulated the rates of charged current nuclear weak interactions in astrophysical conditions, but the present work expands on this not only by providing neutrino energy spectra, but also by including the heretofore untabulated neutral current de-excitation neutrino pairs.


2020 ◽  
Vol 500 (1) ◽  
pp. 696-717 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Vartanyan ◽  
David Radice

ABSTRACT Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, namely Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral standing accretion shock instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate (${\gtrsim} 50 {{\ \rm per\ cent}}$), but the time-integrated signal has a relatively modest asymmetry (${\lesssim} 20 {{\ \rm per\ cent}}$). Both features are associated with the lepton-number emission self-sustained asymmetry and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavours of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of ∼20 per cent if the distance to the CCSN is ≲6 kpc.


Sign in / Sign up

Export Citation Format

Share Document