scholarly journals Retrieval of energy spectra for all flavours of neutrinos from core-collapse supernova with multiple detectors

2020 ◽  
Vol 500 (1) ◽  
pp. 319-332
Author(s):  
Hiroki Nagakura

ABSTRACT We present a new method by which to retrieve energy spectrum for all falvours of neutrinos from core-collapse supernova (CCSN). In the retrieval process, we do not assume any analytic formulas to express the energy spectrum of neutrinos but rather take a direct way of spectrum reconstruction from the observed data; the singular value decomposition algorithm with a newly developed adaptive energy-gridding technique is adopted. We employ three independent reaction channels having different flavour sensitivity to neutrinos. Two reaction channels, inverse beta decay on proton and elastic scattering on electrons, from a water Cherenkov detector such as Super-Kamiokande (SK) and Hyper-Kamiokande (HK), and a charged current reaction channel with Argon from the Deep Underground Neutrino Experiment (DUNE) are adopted. Given neutrino oscillation models, we iteratively search the neutrino energy spectra at the CCSN source until they provide the consistent event counts in the three reaction channels. We test the capability of our method by demonstrating the spectrum retrieval to a theoretical neutrino data computed by our recent three-dimensional CCSN simulation. Although the energy spectrum with either electron-type or electron-type antineutrinos at the CCSN source has relatively large error compared to that of other species, the joint analysis with HK + DUNE or SK + DUNE will provide precise energy spectrum of all flavours of neutrinos at the source. Finally, we discuss perspectives for improvements of our method by using neutrino data of other detectors.

2020 ◽  
Vol 500 (1) ◽  
pp. 696-717 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Vartanyan ◽  
David Radice

ABSTRACT Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, namely Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral standing accretion shock instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angular asymmetry in the event rate (${\gtrsim} 50 {{\ \rm per\ cent}}$), but the time-integrated signal has a relatively modest asymmetry (${\lesssim} 20 {{\ \rm per\ cent}}$). Both features are associated with the lepton-number emission self-sustained asymmetry and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavours of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of ∼20 per cent if the distance to the CCSN is ≲6 kpc.


2019 ◽  
Vol 201 ◽  
pp. 09006 ◽  
Author(s):  
Oleg Kharlanov ◽  
Pavel Shustov

We study the effect of non-standard neutrino interactions (NSIs) on the growth of instabilities in neutrino energy spectra of a core-collapse supernova for different neutrino intensities and/or types of NSIs, notably including the exotic neutrino magnetic moment. Although it is usually attested that instabilities virtually smear out all potentially observable signatures, we show that, instead, there are regimes in which they act as a magnifying glass, bringing tiny effects to the eye of the observer.


2021 ◽  
Vol 921 (2) ◽  
pp. 113
Author(s):  
Michael A. Sandoval ◽  
W. Raphael Hix ◽  
O. E. Bronson Messer ◽  
Eric J. Lentz ◽  
J. Austin Harris

2019 ◽  
Vol 490 (4) ◽  
pp. 4622-4637 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT Using our new state-of-the-art core-collapse supernova (CCSN) code Fornax, we explore the dependence upon spatial resolution of the outcome and character of three-dimensional (3D) supernova simulations. For the same 19 M⊙ progenitor star, energy and radial binning, neutrino microphysics, and nuclear equation of state, changing only the number of angular bins in the θ and ϕ directions, we witness that our lowest resolution 3D simulation does not explode. However, when jumping progressively up in resolution by factors of two in each angular direction on our spherical-polar grid, models then explode, and explode slightly more vigorously with increasing resolution. This suggests that there can be a qualitative dependence of the outcome of 3D CCSN simulations upon spatial resolution. The critical aspect of higher spatial resolution is the adequate capturing of the physics of neutrino-driven turbulence, in particular its Reynolds stress. The greater numerical viscosity of lower resolution simulations results in greater drag on the turbulent eddies that embody turbulent stress, and, hence, in a diminution of their vigor. Turbulent stress not only pushes the temporarily stalled shock further out, but bootstraps a concomitant increase in the deposited neutrino power. Both effects together lie at the core of the resolution dependence we observe.


2020 ◽  
Vol 492 (4) ◽  
pp. 5764-5779 ◽  
Author(s):  
Hiroki Nagakura ◽  
Adam Burrows ◽  
David Radice ◽  
David Vartanyan

ABSTRACT This paper presents the first systematic study of proto-neutron star (PNS) convection in three dimensions (3D) based on our latest numerical fornax models of core-collapse supernova (CCSN). We confirm that PNS convection commonly occurs, and then quantify the basic physical characteristics of the convection. By virtue of the large number of long-term models, the diversity of PNS convective behaviour emerges. We find that the vigour of PNS convection is not correlated with CCSN dynamics at large radii, but rather with the mass of PNS − heavier masses are associated with stronger PNS convection. We find that PNS convection boosts the luminosities of νμ, ντ, $\bar{\nu }_{\mu }$, and $\bar{\nu }_{\tau }$ neutrinos, while the impact on other species is complex due to a competition of factors. Finally, we assess the consequent impact on CCSN dynamics and the potential for PNS convection to generate pulsar magnetic fields.


2015 ◽  
Vol 30 (2) ◽  
pp. 481-483
Author(s):  
KO NAKAMURA ◽  
TAKAMI KURODA ◽  
TOMOYA TAKIWAKI ◽  
KEI KOTAKE

2021 ◽  
Vol 81 (5) ◽  
Author(s):  
B. Abi ◽  
R. Acciarri ◽  
M. A. Acero ◽  
G. Adamov ◽  
D. Adams ◽  
...  

AbstractThe deep underground neutrino experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE’s ability to constrain the $$\nu _e$$ ν e spectral parameters of the neutrino burst will be considered.


2020 ◽  
Vol 496 (2) ◽  
pp. 2039-2084 ◽  
Author(s):  
G Stockinger ◽  
H-T Janka ◽  
D Kresse ◽  
T Melson ◽  
T Ertl ◽  
...  

ABSTRACT We present 3D full-sphere supernova simulations of non-rotating low-mass (∼9 M⊙) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions (∼0.5–1.0 × 1050 erg) of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen–neon–magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the vertex-prometheus code, whereas the ECSN explosion is modelled using parametric neutrino transport in the prometheus-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less second dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of $\mathord {\lesssim }\, 5\, \mathord {\times }\, 10^{-3}$ M⊙ have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly born NS. The LMCCSN model with less second dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km s−1 and a NS spin period of ∼30 ms, both not largely different from those of the Crab pulsar at birth.


Sign in / Sign up

Export Citation Format

Share Document