scholarly journals Leptonic decays of the tau lepton

2019 ◽  
Vol 212 ◽  
pp. 08004 ◽  
Author(s):  
Matteo Fael

In these proceedings we review the SM prediction for the tau leptonic decays, including the radiative $ (\tau \to \ell \lambda \nu \bar \nu ) $ and the five-body $ (\tau \to \ell \ell '\ell '\nu \bar \nu ) $ decay modes, which are among the most powerful tools to study precisely the structure of the weak interaction and to constrain possible contributions beyond the V–A coupling of the Standard Model.

2006 ◽  
Vol 15 (01) ◽  
pp. 259-272
Author(s):  
TSAN UNG CHAN

Positive baryon numbers (A>0) and positive lepton numbers (L>0) characterize matter particles while negative baryon numbers and negative lepton numbers characterize antimatter particles. Matter particles and antimatter particles belong to two distinct classes of particles. Matter neutral particles are particles characterized by both zero baryon number and zero lepton number. This third class of particles includes mesons formed by a quark and an antiquark pair (a pair of matter particle and antimatter particle) and bosons which are messengers of known interactions (photons for electromagnetism, W and Z bosons for the weak interaction, gluons for the strong interaction). The antiparticle of a matter particle belongs to the class of antimatter particles, the antiparticle of an antimatter particle belongs to the class of matter particles. The antiparticle of a matter neutral particle belongs to the same class of matter neutral particles. A truly neutral particle is a particle identical with its antiparticle; it belongs necessarily to the class of matter neutral particles. All known interactions of the Standard Model conserve baryon number and lepton number; matter cannot be created or destroyed via a reaction governed by these interactions. Conservation of baryon and lepton number parallels conservation of atoms in chemistry; the number of atoms of a particular species in the reactants must equal the number of those atoms in the products. These laws of conservation valid for interaction involving matter particles are indeed valid for any particles (matter particles characterized by positive numbers, antimatter particles characterized by negative numbers, and matter neutral particles characterized by zero). Interactions within the framework of the Standard Model which conserve both matter and charge at the microscopic level cannot explain the observed asymmetry of our Universe. The strong interaction was introduced to explain the stability of nuclei: there must exist a powerful force to compensate the electromagnetic force which tends to cause protons to fly apart. The weak interaction with laws of conservation different from electromagnetism and the strong interaction was postulated to explain beta decay. Our observed material and neutral universe would signify the existence of another interaction that did conserve charge but did not conserve matter.


2018 ◽  
Vol 192 ◽  
pp. 00031 ◽  
Author(s):  
Anastasiia Kozachuk ◽  
Dmitri Melikhov ◽  
Nikolai Nikitin

This presentation reviews the main results of our recent work [1] on rare radiative leptonic decays Bd,s → γμ+μ- and Bd,s → γe+e- induced by flavour-changing neutral currents (FCNC) in the Standard Model.


Author(s):  
Robert Fleischer ◽  
Ruben Jaarsma ◽  
Gabriël Koole

Abstract Data in B-meson decays indicate violations of lepton flavour universality, thereby raising the question about such phenomena in the charm sector. We perform a model-independent analysis of NP contributions in (semi)-leptonic decays of $$D_{(s)}$$D(s) mesons which originate from $$c \rightarrow d \bar{{\ell }} \nu _l$$c→dℓ¯νl and $$c \rightarrow s \bar{{\ell }} \nu _{\ell }$$c→sℓ¯νℓ charged-current interactions. Starting from the most general low-energy effective Hamiltonian containing four-fermion operators and the corresponding short-distance coefficients, we explore the impact of new (pseudo)-scalar, vector and tensor operators and constrain their effects through the interplay with current data. We pay special attention to the elements $$|V_{cd}|$$|Vcd| and $$|V_{cs}|$$|Vcs| of the Cabibbo–Kobayashi–Maskawa matrix and extract them from the $$D_{(s)}$$D(s) decays in the presence of possible NP decay contributions, comparing them with determinations utilizing unitarity. We find a picture in agreement with the Standard Model within the current uncertainties. Using the results from our analysis, we make also predictions for leptonic $$D_{(s)}^+ \rightarrow e^+ \nu _e$$D(s)+→e+νe modes which could be hugely enhanced with respect to their tiny Standard Model branching ratios. It will be interesting to apply our strategy at the future high-precision frontier.


Author(s):  
Maarten Boonekamp ◽  
Matthias Schott

With the huge success of quantum electrodynamics (QED) to describe electromagnetic interactions in nature, several attempts have been made to extend the concept of gauge theories to the other known fundamental interactions. It was realized in the late 1960s that electromagnetic and weak interactions can be described by a single unified gauge theory. In addition to the photon, the single mediator of the electromagnetic interaction, this theory predicted new, heavy particles responsible for the weak interaction, namely the W and the Z bosons. A scalar field, the Higgs field, was introduced to generate their mass. The discovery of the mediators of the weak interaction in 1983, at the European Center for Nuclear Research (CERN), marked a breakthrough in fundamental physics and opened the door to more precise tests of the Standard Model. Subsequent measurements of the weak boson properties allowed the mass of the top quark and of the Higgs Boson to be predicted before their discovery. Nowadays, these measurements are used to further probe the consistency of the Standard Model, and to place constrains on theories attempting to answer still open questions in physics, such as the presence of dark matter in the universe or unification of the electroweak and strong interactions with gravity.


2014 ◽  
Vol 35 ◽  
pp. 1460413
Author(s):  
GIANLUIGI CIBINETTO ◽  

CP violation in charm decays is expected to be very small in the Standard Model, at the level of 0.1% or less. A sizable excess of CP violation with respect to the Standard Model predictions could be a signature of new physics. We report on recent searches for CP violation in charm meson decays at BABAR and Belle experiments. In particular we report a lifetime ratio analysis of D0 → K+K−, π+π− with respect to D0 → K−π+ decays, which is sensitive to [Formula: see text] mixing and CP violation. We report also on searches for CPV in the 3-body D+ → K+K−π+ decay and for decay modes with a [Formula: see text] in the final state, such as [Formula: see text].


1992 ◽  
Vol 07 (28) ◽  
pp. 2567-2574 ◽  
Author(s):  
R. FOOT ◽  
H. LEW ◽  
R. R. VOLKAS

It has been shown that parity may be an exact unbroken symmetry of nature. This requires a doubling of the number of physical particles, although only two parameters beyond those in the Standard Model are introduced. We show that the Lagrangian describing parity conserving models can be reformulated in terms of a basis in which each term of the Lagrangian is parity invariant, although gauge invariance is not manifest. We then examine some further experimental signatures of parity conservation. We point out that, in the simplest case, there is one parity-even and one parity-odd physical neutral Higgs mass eigenstate, whose Yukawa coupling constants are [Formula: see text]-that of the Standard Model Higgs boson. Furthermore, half of their widths are generated by almost invisible decay modes. Also, if neutrinos are massive then the ordinary and mirror neutrinos will, in the minimal case, be maximally mixed due to parity conservation. This means that vacuum oscillations can be large, thus providing a possible solution to the solar neutrino problem.


The standard model is a theoretical framework describing the behaviour of elementary quarks and leptons as a result of strong and electroweak interactions. Our current understanding of the production and decay properties of the W ± and Z 0 particles, the exchange bosons of the weak interaction, will be described and the striking agreement of these properties with predictions of the standard model will be emphasized.


1999 ◽  
Vol 14 (20) ◽  
pp. 3121-3156 ◽  
Author(s):  
M. C. GONZALEZ-GARCIA

We review the effects of new effective interactions on Higgs-boson phenomenology. New physics in the electroweak bosonic sector is expected to induce additional interactions between the Higgs doublet field and the electroweak gauge bosons, leading to anomalous Higgs couplings as well as anomalous gauge-boson self-interactions. Using a linearly realized SU (2)L× U (1)Y invariant effective Lagrangian to describe the bosonic sector of the Standard Model, we review the effects of the new effective interactions on the Higgs-boson production rates and decay modes. We summarize the results from searches for the new Higgs signatures induced by the anomalous interactions in order to constrain the scale of new physics, in particular at CERN LEP and Fermilab Tevatron colliders.


Author(s):  
E. Comay

This paper analyzes differences between theoretical elements of the Standard Model electroweak theory and corresponding properties of a dipole-dipole weak interaction theory. The analysis relies on a number of self-evident criteria that are valid for quantum theories. The results demonstrate the  existence of fundamental errors in the electroweak theory and the advantage of the dipole-dipole weak interaction theory.


Sign in / Sign up

Export Citation Format

Share Document