scholarly journals Complex bend of multilayered concrete rods

2019 ◽  
Vol 221 ◽  
pp. 01048
Author(s):  
Yuri Nemirovskii ◽  
Sergey Tikhonov

The problem of complex bend of multilayered rods based on concrete is considered. It is assumed that the rod of constant cross-section is of arbitrary shape and different brands of concrete are used in the cross-section of the rod layer by layer. The solution is sought by the small parameter method. The case of a complex bend of the rod pinched at both ends is considered as an example of this solution method. The distribution of bending moments and longitudinal forces in the zero and first approximations is determined.

1937 ◽  
Vol 4 (2) ◽  
pp. A49-A52
Author(s):  
Miklós Hetényi

Abstract This paper calls attention to a new method of dealing with deflections of beams, the cross sections of which vary by steps. It is shown that the effect of this variation on the shape of the deflection curve can be represented by a properly chosen force system acting on a beam of uniform cross section. There is no approximation involved in this substitution, whereby the original problem is reduced to one of computing deflections of beams of constant cross section.


1978 ◽  
Vol 41 ◽  
pp. 175-176
Author(s):  
M. S. Petrovskaya

AbstractThe exterior gravitational field depending on the Earth’s non-sphericity is usually determined from the analysis of satellite data or by the solution of the exterior boundary value problem. In the latter case some integral equations are solved which correlate the exterior potential with the known vector of gravity and the shape of the Earth’s surface (molodensky problem). In order to carry out the integration the small parameter method is applied. As a result, all the quantities which involve the equations should be expanded in powers of a certain small parameter, among these being the heights of the Earth’s surface points as well as the inclination α of the Earth’s physical surface. Since the angle α can be significant, especially in mountains, and in fact does not depend on any small parameter then the solution of integral equations is possible only for the Earth’s surface which is smoothed enough.


It is now well over eighty years ago since Barre de Saint-Venant reduced the problem of the beam of constant cross-section under the action of a single transverse load to the search for plane harmonic functions satisfying a certain condition round the boundary of the cross-section. The solutions due to Saint-Venant, which include the rectangular, elliptic and circular cross-sections, are all cases in which the cross-sections have two axes of symmetry at right angles, meeting of necessity in the centroid of the cross-section, and along these axes the single transverse load is resolved. These axes are principal axes, and his solution depends upon this fact. Some less useful solutions exist for the load along one axis of certain beams of such bi-axial symmetry of cross-section, the solutions not yet being known for the load along the perpendicular axis.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
A. I. Ismail

The small parameter method was applied for solving many rotational motions of heavy solids, rigid bodies, and gyroscopes for different problems which classify them according to certain initial conditions on moments of inertia and initial angular velocity components. For achieving the small parameter method, the authors have assumed that the initial angular velocity is sufficiently large. In this work, it is assumed that the initial angular velocity is sufficiently small to achieve the large parameter instead of the small one. In this manner, a lot of energy used for making the motion initially is saved. The obtained analytical periodic solutions are represented graphically using a computer program to show the geometric periodicity of the obtained solutions in some interval of time. In the end, the geometric interpretation of the stability of a motion is given.


Sign in / Sign up

Export Citation Format

Share Document