scholarly journals Production yields of 𝛽+ emitters for range verification in proton therapy

2020 ◽  
Vol 239 ◽  
pp. 24003
Author(s):  
T. Rodríguez-González ◽  
C. Guerrero ◽  
M.C. Jiménez-Ramos ◽  
P. Dendooven ◽  
J. Lerendegui-Marco ◽  
...  

In-vivo Positron Emission Tomography (PET) range verification relies on the comparison of the measured and estimated activity distributions from β+ emitters induced by the proton beam on the most abundant elements in the human body, right after (looking at the long-lived β+ emitters 11C, 13N and 15O) or during (looking at the short-lived β+ emitters 29P, 12N, 38mK and 10C) the irradiation. The accuracy of the estimated activity distributions is basically that of the underlying cross section data. In this context, the aim of this work is to improve the knowledge of the production yields of β+ emitters of interest in proton therapy. In order to measure the long-lived β+ isotopes, a new method has been developed combining the multi-foil technique with the measurement of the induced activity with a clinical PET scanner. This technique has been tested successfully below 18 MeV at CNA (Spain) and will be used at a clinical beam to obtain data up to 230 MeV. However, such method does not allow measuring the production short-lived isotopes (lower half-life). For this, the proposed method combines a series of targets sandwiched between aluminum foils (acting as both degraders and converters) placed between two LaBr3 detectors that will measure the pairs of 511 keV γ-rays. The first tests will take place at the AGOR facility at KVI-CART, in Groningen.

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johannes Notni ◽  
Florian T. Gassert ◽  
Katja Steiger ◽  
Peter Sommer ◽  
Wilko Weichert ◽  
...  

Following publication of the original article [1], the authors have reported an error in the ‘Histopathology’ (under ‘Materials and methods’) section of the article that compromises the reproducibility of the paper.


1996 ◽  
Vol 84 (3) ◽  
pp. 494-502 ◽  
Author(s):  
Bernhard Zünkeler ◽  
Richard E. Carson ◽  
Jeffrey Olson ◽  
Ronald G. Blasberg ◽  
Mary Girton ◽  
...  

✓ Hyperosmolar blood-brain barrier (BBB) disruption remains controversial as an adjuvant therapy to increase delivery of water-soluble compounds to extracellular space in the brain in patients with malignant brain tumors. To understand the physiological effects of BBB disruption more clearly, the authors used positron emission tomography (PET) to study the time course of BBB permeability in response to the potassium analog rubidium-82 (82Rb, halflife 75 seconds) following BBB disruption in anesthetized adult baboons. Mannitol (25%) was injected into the carotid artery and PET scans were performed before and serially at 8- to 15-minute intervals after BBB disruption. The mean influx constant (K1), a measure of permeability-surface area product, in ipsilateral, mannitol-perfused mixed gray- and white-matter brain regions was 4.9 ± 2.4 µl/min/ml (± standard deviation) at baseline and increased more than 100% (ΔK1 = 9.4 ± 5.1 µl/min/ml, 18 baboons) in brain perfused by mannitol. The effect of BBB disruption on K1 correlated directly with the total amount of mannitol administered (p < 0.005). Vascular permeability returned to baseline with a halftime of 24.0 ± 14.3 minutes. The mean brain plasma volume rose by 0.57 ± 0.34 ml/100 ml in ipsilateral perfused brain following BBB disruption. This work provides a basis for the in vivo study of permeability changes induced by BBB disruption in human brain and brain tumors.


Synapse ◽  
2002 ◽  
Vol 43 (3) ◽  
pp. 195-200 ◽  
Author(s):  
Hiroyuki Umegaki ◽  
Kiichi Ishiwata ◽  
Osamu Ogawa ◽  
Donald K. Ingram ◽  
George S. Roth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document