scholarly journals Status of JUNO Simulation Software

2020 ◽  
Vol 245 ◽  
pp. 02022
Author(s):  
Ziyan Deng

The JUNO (Jiangmen Underground Neutrino Observatory) experiment is a multi-purpose neutrino experiment designed to determine the neutrino mass hierarchy and precisely measure oscillation parameters. It will be composed of a 20k ton liquid scintillator (LS) central detector equipped with about 18000 20-inch photon-multipliers (PMTs) and 25000 3-inch PMTs, a water Cherenkov detector with about 2000 20-inch PMTs, and a top tracker. Monte-Carlo simulation is a fundamental tool for optimizing the detector design, tuning reconstruction algorithms, and performing physics study. The status of JUNO simulation software will be presented, including generator interface, detector geometry, physics processes, MC truth, pull-mode electronic simulation.

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
S. Andringa ◽  
E. Arushanova ◽  
S. Asahi ◽  
M. Askins ◽  
D. J. Auty ◽  
...  

SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The0νββPhase I is foreseen for 2017.


2019 ◽  
Vol 64 (7) ◽  
pp. 635
Author(s):  
M. Schever

The Jiangmen Underground Neutrino Observatory (JUNO) is a next generation multipurpose antineutrino detector currently under construction in Jiangmen, China. The central detector, containing 20 kton of a liquid scintillator, will be equipped with ∼18 000 20 inch and 25 600 3 inch photomultiplier tubes. Measuring the reactor antineutrinos of two powerplants at a baseline of 53 km with an unprecedented energy resolution of 3%/√︀E(MeV), the main physics goal is to determine the neutrino mass hierarchy within six years of run time with a significance of 3–4q. Additional physics goals are the measurement of solar neutrinos, geoneutrinos, supernova burst neutrinos, the diffuse supernova neutrino background, and the oscillation parameters sin2 O12, Δm212, and |Δm2ee| with a precision <1%, as well as the search for proton decays. The construction is expected to be completed in 2021.


2019 ◽  
Vol 214 ◽  
pp. 02008
Author(s):  
Tao Lin ◽  
Jiaheng Zou ◽  
Weidong Li ◽  
Ziyan Deng ◽  
Guofu Cao ◽  
...  

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment. It consists of a central detector, a water pool and a tracker placed on top. The central detector, which is used for neutrino detection, consists of a 20 kt liquid scintillator target and about 18,000 20-inch photomultiplier tubes (PMTs) to detect scintillation photons. Simulation software is an important part of the JUNO offline software. To speed up the simulation, a parallelized simulation framework has been developed based on the SNiPER framework and Geant4 version 10. The SNiPER task components are in charge of the event loop, which can run in sequential mode, Intel TBB mode and other modes. Based on SNiPER, the simulation framework and its underlying parallel libraries have been decoupled. However, parallelized simulation of correlated events is a challenge. In order to keep the correct event order, a component called global buffer is developed in SNiPER. In this paper, an overview of the parallelized JUNO simulation framework is presented. The global buffer is used in the parallelized event correlation simulation. An event generator produces events with timestamps in sequential mode. These events are put into the global buffer and processed by the detector simulation algorithms in different tasks. After simulation, the events are saved into ROOT files with a ROOT I/O service running in a dedicated thread. Finally, the software performance is presented.


2020 ◽  
Vol 245 ◽  
pp. 04030
Author(s):  
Xingtao Huang

The Jiangmen Underground Neutrino Observatory (JUNO) experiment is designed to determine the neutrino mass hierarchy and precisely measure oscillation parameters with an unprecedented energy resolution of 3% at 1 MeV. It is composed of a 20 kton liquid scintillator central detector equipped with 18000 20-inch PMTs and 25000 3-inch PMTs, a water pool with 2000 20-inch PMTs, and a top tracker. Conditions data, coming from calibration and detector monitoring, are heterogeneous, different type of conditions data has different write rates, data format and data volume. JUNO conditions data management system (JCDMS) is developed to homogeneously treat all these heterogeneous conditions data in order to provide easy management and convenient access with both Restful API and web interfaces, support good scalability and maintenance for long time running. The paper describes the status and development of JCDMS including the data model, workflows, interfaces, data caching and performance of the system.


2020 ◽  
Vol 35 (09) ◽  
pp. 2030004
Author(s):  
Lino Miramonti

One of the remaining undetermined fundamental aspects in neutrino physics is the determination of the neutrino mass hierarchy, i.e. discriminating between the two possible orderings of the mass eigenvalues, known as Normal and Inverted Hierarchies. The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kt Liquid Scintillator Detector currently under construction in the South of China, can determine the neutrino mass hierarchy and improve the precision of three oscillation parameters by one order of magnitude. Moreover, thanks to its large liquid scintillator mass, JUNO will also contribute to study neutrinos from non-reactor sources such as solar neutrinos, atmospheric neutrinos, geoneutrinos, supernova burst and diffuse supernova neutrinos. Furthermore, JUNO will also contribute to nucleon decay studies. In this work, I will describe the status and the perspectives of the JUNO experiment.


2019 ◽  
Vol 207 ◽  
pp. 05004 ◽  
Author(s):  
Chiara De Sio

The KM3NeT Collaboration is building a network of underwater Cherenkov telescopes at two sites in the Mediterranean Sea, with the main goals of investigating astrophysical sources of high-energy neutrinos (ARCA) and of determining the neutrino mass hierarchy (ORCA). Various Machine Learning techniques, such as Random Forests, BDTs, Shallow and Deep Networks are being used for diverse tasks, such as event-type and particle identification, energy/direction estimation, source identification, signal/background discrimination and data analysis, with sound results as well as promising research paths. The main focus of this work is the application of Convolutional Neural Network models to the tasks of neutrino interaction classification, as well as the estimation of energy and direction of the propagating particles. The performances are also compared to those of the standard reconstruction algorithms used in the Collaboration.


2019 ◽  
Vol 209 ◽  
pp. 01012
Author(s):  
Cristina Martellini ◽  
Stefano Maria Mari ◽  
Paolo Montini ◽  
Giulio Settanta

Observation of supernovae (SN) through their neutrino emission is a fundamental point to understand both SN dynamics and neutrino physical properties. JUNO is a 20kton liquid scintillator detector, under construction in Jiangmen, China. The main aim of the experiment is to determine neutrino mass hierarchy by precisely measuring the energy spectrum of reactor electron antineutrinos. However due to its properties, JUNO has the capability of detecting a high statistics of SN events too. Existing data from SN neutrino consists only of 24 events coming from the SN 1987A,the detection of a SN burst in JUNO at ~ 10kpc will yield ~ 5x103 inverse beta decay (IBD) events from electron antineutrinos, about 1500 from proton elastic scattering (pES) above the threshold of 0.2 MeV, about 400 from electron elastic scattering (eES), plus several hundreds on other CC and NC interaction channels from all neutrino species.


Author(s):  
Yu-Feng Li

The medium baseline reactor antineutrino experiment, Jiangmen Underground Neutrino Observatory (JUNO), which is being planned to be built at Jiangmen in South China, can determine the neutrino mass hierarchy and improve the precision of three oscillation parameters by one order of magnitude. The sensitivity potential on these measurements is reviewed and design concepts of the central detector are illustrated. Finally, we emphasize on the technical challenges we meet and the corresponding R&D efforts.


Universe ◽  
2018 ◽  
Vol 4 (11) ◽  
pp. 126 ◽  
Author(s):  
Lino Miramonti

The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator multi-purpose underground detector, under construction near the Chinese city of Jiangmen, with data collection expected to start in 2021. The main goal of the experiment is the neutrino mass hierarchy determination, with more than three sigma significance, and the high-precision neutrino oscillation parameter measurements, detecting electron anti-neutrinos emitted from two nearby (baseline of about 53 km) nuclear power plants. Besides, the unprecedented liquid scintillator-type detector performance in target mass, energy resolution, energy calibration precision, and low-energy threshold features a rich physics program for the detection of low-energy astrophysical neutrinos, such as galactic core-collapse supernova neutrinos, solar neutrinos, and geo-neutrinos.


Author(s):  
Lino Miramonti

The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton liquid scintillator multi-purpose underground detector, under construction near the chinese city of Jiangmen, with data taking expected to start in 2021. The main goal of the experiment is the neutrino mass hierarchy determination, with more than three sigma significance, and the high precision neutrino oscillation parameters measurements, detecting electron anti-neutrinos, emitted from two near-by (baseline of about 53 km) nuclear power plants. Besides, the unprecedented liquid scintillator type detector performance in target mass, energy resolution, energy calibration precision and low-energy threshold, features a rich physics program for the detection of low-energy astrophysical neutrinos, such as galactic core-collapse supernova neutrinos, solar neutrinos and geo-neutrinos.


Sign in / Sign up

Export Citation Format

Share Document