scholarly journals Status of the parallelized JUNO simulation software

2019 ◽  
Vol 214 ◽  
pp. 02008
Author(s):  
Tao Lin ◽  
Jiaheng Zou ◽  
Weidong Li ◽  
Ziyan Deng ◽  
Guofu Cao ◽  
...  

The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose neutrino experiment. It consists of a central detector, a water pool and a tracker placed on top. The central detector, which is used for neutrino detection, consists of a 20 kt liquid scintillator target and about 18,000 20-inch photomultiplier tubes (PMTs) to detect scintillation photons. Simulation software is an important part of the JUNO offline software. To speed up the simulation, a parallelized simulation framework has been developed based on the SNiPER framework and Geant4 version 10. The SNiPER task components are in charge of the event loop, which can run in sequential mode, Intel TBB mode and other modes. Based on SNiPER, the simulation framework and its underlying parallel libraries have been decoupled. However, parallelized simulation of correlated events is a challenge. In order to keep the correct event order, a component called global buffer is developed in SNiPER. In this paper, an overview of the parallelized JUNO simulation framework is presented. The global buffer is used in the parallelized event correlation simulation. An event generator produces events with timestamps in sequential mode. These events are put into the global buffer and processed by the detector simulation algorithms in different tasks. After simulation, the events are saved into ROOT files with a ROOT I/O service running in a dedicated thread. Finally, the software performance is presented.

2020 ◽  
Vol 245 ◽  
pp. 02022
Author(s):  
Ziyan Deng

The JUNO (Jiangmen Underground Neutrino Observatory) experiment is a multi-purpose neutrino experiment designed to determine the neutrino mass hierarchy and precisely measure oscillation parameters. It will be composed of a 20k ton liquid scintillator (LS) central detector equipped with about 18000 20-inch photon-multipliers (PMTs) and 25000 3-inch PMTs, a water Cherenkov detector with about 2000 20-inch PMTs, and a top tracker. Monte-Carlo simulation is a fundamental tool for optimizing the detector design, tuning reconstruction algorithms, and performing physics study. The status of JUNO simulation software will be presented, including generator interface, detector geometry, physics processes, MC truth, pull-mode electronic simulation.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Angel Abusleme ◽  
Thomas Adam ◽  
Shakeel Ahmad ◽  
Rizwan Ahmed ◽  
Sebastiano Aiello ◽  
...  

AbstractThe OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO reactor neutrino experiment. Its purpose is to validate the radiopurity of the scintillator to assure that all components of the JUNO scintillator system work to specifications and only neutrino-grade scintillator is filled into the JUNO Central Detector. The aspired sensitivity level of $$10^{-16}\hbox { g/g}$$ 10 - 16 g/g of $$^{238}\hbox {U}$$ 238 U and $$^{232}\hbox {Th}$$ 232 Th requires a large ($$\sim 20\,\hbox {m}^3$$ ∼ 20 m 3 ) detection volume and ultralow background levels. The present paper reports on the design and major components of the OSIRIS detector, the detector simulation as well as the measuring strategies foreseen and the sensitivity levels to U/Th that can be reached in this setup.


2019 ◽  
Vol 214 ◽  
pp. 02023
Author(s):  
Laure Massacrier ◽  
Dmitry Popov ◽  
Patrick Robbe ◽  
Michael Winn

The LHCb experiment has been operating in various beam configurations in Run 1 and 2 of the LHC, with collisions of lead ion beams or in a fixed-target setup. In order to analyse these data, the Gauss simulation software has been extended to be able to generate events describing these configurations, based mainly on the EPOS event generator. These proceedings give details about the methods employed.


2021 ◽  
Vol 251 ◽  
pp. 02062
Author(s):  
Joshua Barrow ◽  
Gustaaf Brooijmans ◽  
José Ignacio Marquez Damian ◽  
Douglas DiJulio ◽  
Katherine Dunne ◽  
...  

The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source focusing on searches for baryon number violation via processes in which neutrons convert to antineutrons. This paper outlines the computing and detector simulation framework for the HIBEAM/NNBAR program. The simulation is based on predictions of neutron flux and neutronics together with signal and background generation. A range of diverse simulation packages are incorporated, including Monte Carlo transport codes, neutron ray-tracing simulation packages, and detector simulation software. The common simulation package in which these elements are interfaced together is discussed. Data management plans and triggers are also described.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Baobiao Yue ◽  
Jiajun Liao ◽  
Jiajie Ling

Abstract Neutrino magnetic moment (νMM) is an important property of massive neutrinos. The recent anomalous excess at few keV electronic recoils observed by the XENON1T collaboration might indicate a ∼ 2.2 × 10−11μB effective neutrino magnetic moment ($$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff ) from solar neutrinos. Therefore, it is essential to carry out the νMM searches at a different experiment to confirm or exclude such a hypothesis. We study the feasibility of doing νMM measurement with 4 kton fiducial mass at Jinping neutrino experiment (Jinping) using electron recoil data from both natural and artificial neutrino sources. The sensitivity of $$ {\mu}_{\nu}^{\mathrm{eff}} $$ μ ν eff can reach < 1.2 × 10−11μB at 90% C.L. with 10-year data taking of solar neutrinos. Besides the abundance of the intrinsic low energy background 14C and 85Kr in the liquid scintillator, we find the sensitivity to νMM is highly correlated with the systematic uncertainties of pp and 85Kr. Reducing systematic uncertainties (pp and 85Kr) and the intrinsic background (14C and 85Kr) can help to improve sensitivities below these levels and reach the region of astrophysical interest. With a 3 mega-Curie (MCi) artificial neutrino source 51Cr installed at Jinping neutrino detector for 55 days, it could give us a sensitivity to the electron neutrino magnetic moment ($$ {\mu}_{\nu_e} $$ μ ν e ) with < 1.1 × 10−11μB at 90% C.L. . With the combination of those two measurements, the flavor structure of the neutrino magnetic moment can be also probed at Jinping.


2012 ◽  
Vol 591-593 ◽  
pp. 174-178
Author(s):  
Hang Yin ◽  
Yong Ming Gao ◽  
Chao Wang ◽  
Xin Xing Li

With the continuous improvement of complexity in the space simulation system and the enhancement of multi-technology integration, the co-simulation technology is an important way to solve complex simulation problems in the big system. After analysis of relative theories and main methods of co-simulation, collaboration data interfaces among multiple software are improved and matched with a number of simulation software system. The co-simulation framework is designed and a set of spacecraft dynamics co-simulation analysis system is established on the frame of HLA / RTI and on the principle of co-simulation technology. The key task on orbit service of the spacecraft is modeled and simulated. The software can complete the work that a single simulation software could not be done and achieve good results.


2014 ◽  
Vol 38 (11) ◽  
pp. 116201 ◽  
Author(s):  
Jie Zhao ◽  
Ze-Yuan Yu ◽  
Jiang-Lai Liu ◽  
Xiao-Bo Li ◽  
Fei-Hong Zhang ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
S. Andringa ◽  
E. Arushanova ◽  
S. Asahi ◽  
M. Askins ◽  
D. J. Auty ◽  
...  

SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The0νββPhase I is foreseen for 2017.


Sign in / Sign up

Export Citation Format

Share Document