scholarly journals Influence of individual tree and stand attributes in stem straightness inPinus pinasterAit. stands

2004 ◽  
Vol 61 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Miren del Río ◽  
Felipe Bravo ◽  
Valentín Pando ◽  
Gemma Sanz ◽  
Rosario Sierra de Grado
Author(s):  
Quang V. Cao

This study discussed four methods to project a diameter distribution from age A1 to age A2. Method 1 recovers parameters of the distribution at age A2 from stand attributes at that age. Method 2 uses a stand-level model to grow the quadratic mean diameter, and then recovers the distribution parameters from that prediction. Method 3 grows the diameter distribution by assuming tree-level survival and diameter growth functions. Method 4 first converts the diameter distribution at age A1 into a list of individual trees before growing these trees to age A2. In a numerical example employing the Weibull distribution, methods 3 and 4 produced better results based on two types of error indices and the relative predictive error for each diameter class. Method 4 is a novel method that converts a diameter distribution into a list of individual-trees, and in the process, successfully links together diameter distribution, individual-tree, and whole stand models.


2018 ◽  
Vol 27 (1) ◽  
pp. e001 ◽  
Author(s):  
Adrián Pascual ◽  
Timo Pukkala ◽  
Sergio De-Miguel ◽  
Annukka Pesonen ◽  
Petteri Packalen

Aim of study: To analyze the influence of harvesting costs on the distribution and type of cuttings when forest management planning is based on the dynamic treatment units (DTUs) approach.Area of study: A Mediterranean pine forest in Central Spain.Materials and methods: Airborne laser scanning data were used in area-based approach to predict stand attributes and delineate segments that were used as calculation units. Predicted stand attributes and existing models for diameter distribution and individual-tree growth were used to simulate alternative management schedules for each segment for a 60-year planning horizon divided into three 20-year periods. Three alternative forest planning problems were formulated. They aimed to maximize or minimize net income, or maximize timber production with a constant flow of harvested timber. Spatial goals were used in all cases to enhance the clustering of treatments.Main results: Maxizing timber production without considering harvesting costs can be costly, even close to the plan that minimized net incomes. Maximizing net incomes led to frequent use of final felling instead of thinnings, placing cuttings near forest roads and creating more compact DTUs than obtained in the plan that maximized timber production.Research highlights: Compared to previous studies on DTUs, this study integrated felling and forwarding costs, which depended on distance to road and stand attributes, in the process of creating DTUs by means of spatial optimization.


2006 ◽  
Vol 36 (4) ◽  
pp. 953-960 ◽  
Author(s):  
Jianhua Qin ◽  
Quang V Cao

Data from 200 plots randomly selected from the Southwide Pine Seed Source Study of loblolly pine (Pinus taeda L.) were used to fit whole-stand and individual-tree equations. Another 100 plots, also randomly selected, were used for validation. Outputs from the individual-tree model were then adjusted to match observed stand attributes (number of trees, basal area, and volume per hectare) by four disaggregation methods: proportional yield, proportional growth, constrained least squares, and coefficient adjustment. The first three are existing methods, and the fourth is new. The four methods produced similar results, and the coefficient adjustment was then selected as the method to disaggregate predicted stand growth among trees in the tree list. Results showed that, compared to the unadjusted individual tree model, the adjusted tree model performed much better in predicting stand attributes, while providing comparable predictions of tree diameter, height, and survival probability. The proposed approach showed promise in the ongoing effort to link growth models having different resolutions.


1999 ◽  
Vol 23 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Thomas B. Lynch ◽  
Kenneth L. Hitch ◽  
Michael M. Huebschmann ◽  
Paul A. Murphy

Abstract The development of a system of equations that model the growth and development of even-aged natural shortleaf (Pinus echinata Mill.) pine forests is described. The growth prediction system is a distance-independent individual-tree simulator containing equations that predict basal-area growth, survival, total and merchantable heights, and total and merchantable volumes for shortleaf pine trees. These equations were combined into a computer simulation program that predicts future states of shortleaf pine stands from initial stand descriptions. Comparisons of observed and predicted ending stand conditions in shortleaf pine research plots indicate the simulator makes acceptable forecasts of final stand attributes. South. J. Appl. For. 23(4):203-211.


1986 ◽  
Vol 16 (6) ◽  
pp. 1230-1237 ◽  
Author(s):  
Richard F. Daniels ◽  
Harold E. Burkhart ◽  
Terry R. Clason

Five families of competition indices were evaluated and compared on the basis of simple correlation with loblolly pine individual tree growth and multiple correlation with growth in the presence of other tree and stand attributes. The family of distance-independent indices included various relative size measures in the form of tree size to mean size ratios. Crown ratio was also included as a distance-independent measure. The four families of distance-dependent indices included various influence area overlap indices, distance-weighted size ratio indices, Spurr's point density, and Brown's point density or area potentially available (APA). All indices were significantly correlated with dbh and basal area growth. The relative size ratio indices, crown ratio, Spurr's point density, and several APA variations were judged best in simple correlations after accounting for tree size and stand density. The best distance-dependent indices had little if any advantage, either in simple or multiple correlation, over the best distance-independent indices. However, the point density index of Spurr and especially APA contributed significantly to growth prediction even in the presence of tree size, stand density, and the distance-independent size ratio and crown ratio indices. Further, APA had the highest partial correlation when all variables were included in this multiple correlation. It was concluded the APA would be a good index for growth prediction models when other tree and stand attributes are already known.


Author(s):  
Natalya V. Ivanova ◽  
◽  
Maxim P. Shashkov ◽  
Vladimir N. Shanin ◽  
◽  
...  

Nowadays, due to the rapid development of lightweight unmanned aerial vehicles (UAV), remote sensing systems of ultra-high resolution have become available to many researchers. Conventional ground-based measurements for assessing tree stand attributes can be expensive, as well as time- and labor-consuming. Here, we assess whether remote sensing measurements with lightweight UAV can be more effective in comparison to ground survey methods in the case of temperate mixed forests. The study was carried out at the Prioksko-Terrasny Biosphere Nature Reserve (Moscow region, Russia). This area belongs to a coniferous-broad-leaved forest zone. Our field works were carried out on the permanent sampling plot of 1 ha (100×100 m) established in 2016. The coordinates of the plot center are N 54.88876°, E 37.56273° in the WGS 84 datum. All trees with DBH (diameter at breast height) of at least 6 cm (779 trees) were mapped and measured during the ground survey in 2016 (See Fig. 1 and Table 1). Mapping was performed with Laser Technology TruPulse 360B angle and a distance meter. First, polar coordinates of each tree trunk were measured, and then, after conversion to the cartesian coordinates, the scheme of the stand was validated onsite. Species and DBH were determined for each tree. For each living tree, we detected a social status class (according to Kraft). Also for living trees, we measured the tree height and the radii of the crown horizontal projection in four cardinal directions. A lightweight UAV Phantom 4 (DJI-Innovations, Shenzhen, China) equipped with an integrated camera of 12Mp sensor was used for aerial photography in this study. Technical parameters of the camera are available in Table 2. The aerial photography was conducted on October 12, 2017, from an altitude of 68 m. The commonly used mosaic flight mode was used with 90% overlapping both for side and front directions. We applied Agisoft Metashape software for orthophoto mosaic image and dense point cloud building. The canopy height model (CHM) was generated with lidR package in R. We used lasground() function and cloth simulation filter for classification of ground points. To create a normalized dataset with the ground at 0, we used spatial interpolation algorithm tin based on a Delaunay triangulation, which performs a linear interpolation within each triangle, implemented in the lasnormilise() function. CHM was generated according to the pit-free algorithm based on the computation of a set of classical triangulations at different heights. The location and height of individual trees were automatically detected by the function FindTreesCHM() from the package rLIDAR in R. The algorithm implemented in this function is local maximum with fixed window size. Accuracy assessment of automatically detected trees (in QGIS software) was performed through visual interpretation of orthophoto mosaic and comparison with ground survey data. The number of correctly detected trees, omitted by the algorithm and not existing but detected trees were counted. As a result of aerial photography, 501 images were obtained. During these data processing with the Metashape, dense point cloud of 163.7 points / m2 was generated. CHM with 0.5 m resolution was calculated. According to the individual-tree detection algorithm, 241 trees were found automatically (See Fig. 2A). The total accuracy of individual tree detection was 73.9%. Coniferous trees (Pinus sylvestris and Picea abies) were successfully detected (86.0% and 100%, respectively), while results for birch (Betula spp.) required additional treatment. The algorithm correctly detected only 58.2% of birch trees due to false-positive trees (See Fig. 2B and Table 3). These results confirm the published literature data obtained for managed tree stands. Tree heights retrieved from the UAV were well-matched to ground-based method results. The mean tree heights retrieved from the UAV and ground surveys were 25.0±4.8 m (min 8.2 m, max 32.9 m) and 25.3±5.2 m (min 5.9 m, max 34.0 m), respectively (no significant difference, p-value=0.049). Linear regression confirmed a strong relationship between the estimated and measured heights (y=k*x, R2 =0.99, k=0.98) (See Fig. 3A). Slightly larger differences in heights estimated by the two methods were found for birch and pine; for spruce, the differences were smaller (See Fig. 3B and Table 4). We believe that ground measurements of birch and pine height are less accurate than for spruce due to different crown shapes of these trees. So, our results suggested that UAV data can be used for tree stand attributes estimation, but automatically obtained data require validation.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1129 ◽  
Author(s):  
Irena Fundova ◽  
Henrik R. Hallingbäck ◽  
Gunnar Jansson ◽  
Harry X. Wu

Given an overall aim of improving Scots pine structural wood quality by selective tree breeding, we investigated the potential of non-destructive acoustic sensing tools to accurately predict wood stiffness (modulus of elasticity, MOE) and strength (modulus of rupture, MOR) of sawn boards. Non-destructive measurements of wood density (DEN), acoustic velocity (VEL) and MOE were carried out at different stages of wood processing chain (standing trees, felled logs and sawn boards), whilst destructively measured stiffness and strength served as benchmark traits. All acoustic based MOE and VEL estimates proved to be good proxies (rA > 0.65) for sawn-board stiffness while MOETREE, VELHIT and resistograph wood density (DENRES) measured on standing trees and MOELOG and VELFAK measured on felled logs well reflected board strength. Individual-tree narrow-sense heritability ( h i 2 ) for VEL, MOE and MOR were weak (0.05–0.26) but were substantially stronger for wood density (0.34–0.40). Moreover, additive genetic coefficients of variation for MOE and MOR were in the range from 5.4% to 9.1%, offering potential targets for exploitation by selective breeding. Consequently, selective breeding based on MOETREE, DENRES or stem straightness (STR) could improve several structural wood traits simultaneously.


2013 ◽  
Vol 62 (1-6) ◽  
pp. 277-284 ◽  
Author(s):  
Huixiao Yang ◽  
Tianyi Liu ◽  
Chunxin Liu ◽  
Jinbang Wang ◽  
Kaer Chen ◽  
...  

Abstract Genetic parameters for height (H), diameter at breast height (DBH), stem straightness (STR), and under crown clear bole height (CH) of loblolly pine (Pinus taeda L.) were estimated for 255 families (209 open pollinated (OP) and 46 controlled pollinated (CP) families) using a family model and an individual tree model at age 1, 2, 3, 5, 11, and 15 years. Heritability estimates for growth traits of individual trees at age 11 years were the highest (0.17-0.78), and those at age 15 years were the lowest (0.05-0.74). Heritability estimates for DBH, STR, and CH were lower than those for H. Genetic correlations between H and DBH were generally strongly positive, attained a maximum values at age 2 to 3, and declined slightly thereafter. The genetic correlations between CH at age 11 and both H and DBH at different ages were moderate. Age-age genetic correlations for growth traits were moderate to high (0.56-0.91) at age 5 for half-rotation age (15 years), indicating the opportunity exists for early selection. Indirect selection from the age 5 to 11 years for H and DBH could be expected to produce gains of over 50% and 35% respectively, for these two ages, relative to direct selection at age 15. Efficiencies of early selection for H and DBH indicated that growth at maturity could be improved by early selection.


2017 ◽  
Vol 168 (3) ◽  
pp. 127-133
Author(s):  
Matthew Parkan

Airborne LiDAR data: relevance of visual interpretation for forestry Airborne LiDAR surveys are particularly well adapted to map, study and manage large forest extents. Products derived from this technology are increasingly used by managers to establish a general diagnosis of the condition of forests. Less common is the use of these products to conduct detailed analyses on small areas; for example creating detailed reference maps like inventories or timber marking to support field operations. In this context, the use of direct visual interpretation is interesting, because it is much easier to implement than automatic algorithms and allows a quick and reliable identification of zonal (e.g. forest edge, deciduous/persistent ratio), structural (stratification) and point (e.g. tree/stem position and height) features. This article examines three important points which determine the relevance of visual interpretation: acquisition parameters, interactive representation and identification of forest characteristics. It is shown that the use of thematic color maps within interactive 3D point cloud and/or cross-sections makes it possible to establish (for all strata) detailed and accurate maps of a parcel at the individual tree scale.


Sign in / Sign up

Export Citation Format

Share Document