scholarly journals Bigger perturbations enhance higher trophic levels biomass, increase transfer efficiency and may sustain for bigger plankton biodiversity

2020 ◽  
Vol 34 ◽  
pp. 02009
Author(s):  
Anupam Priyadarshi ◽  
Ram Chandra

Highly intermittent phytoplankton is ubiquitously observed when measurements are performed at micro-scale (< 1mm). The conventional way of plankton modelling is based on the mean-field approach in which only the first central-moment approximations is retained and ignored higher central moments). The conventional modeling approach may be suitable for mesoor bigger scale (km) but it is inappropriate for micro-scale (< 1mm) where observed overlap in the intermittent spatial distributions of predators and prey become more important for determining the flow of nutrients and energy up the food chain. A new modelling approach called closure modelling is developed to account intermittent phytoplankton using Reynold’s decomposition from turbulence theory and retaining higher central moment approximations in Taylor series. In this study, we developed a NPZD compartmental model to describe the interactions of nutrient (N), phytoplankton (P), zooplankton (Z) and detritus (D) using closure modelling which accounts mean and fluctuating parts of these plankton variables. The results obtained in NPZD compartmental model confirm that perturbation / heterogeneity supports higher trophic levels involved in the model. This reassured the earlier results observed in case of NP and NPZ models in which perturbations enhances P-biomass and Z-biomass respectively. It is observed that perturbation / heterogeneity and a statistical quantity called coefficient of variations of phytoplankton (CVp) (ratio of standard deviation and mean) are positively associated in plankton ecosystems. The perturbations / heterogeneity leads to higher transfer efficiency (Z-biomass/P-biomass) in plankton ecosystems. These results are robust i.e. independent of parameters choices. Perturbation / heterogeneity effects on community structure, species richness and may quantify the energy transfer along trophic levels through biological process from primary production to higher trophic levels. Based on our study, we hypothesize that the locations with high (CVp) are highly heterogeneous and have high transfer efficiency, while low (CVp) locations are less heterogeneous around Tokyo Bay.

2018 ◽  
Vol 5 (5) ◽  
pp. 180200 ◽  
Author(s):  
Erivelton G. Nepomuceno ◽  
Alípio M. Barbosa ◽  
Marcos X. Silva ◽  
Matjaž Perc

We present a theoretical approach to control bovine brucellosis. We have used individual-based modelling, which is a network-type alternative to compartmental models. Our model thus considers heterogeneous populations, and spatial aspects such as migration among herds and control actions described as pulse interventions are also easily implemented. We show that individual-based modelling reproduces the mean field behaviour of an equivalent compartmental model. Details of this process, as well as flowcharts, are provided to facilitate the reproduction of the presented results. We further investigate three numerical examples using real parameters of herds in the São Paulo state of Brazil, in scenarios which explore eradication, continuous and pulsed vaccination and meta-population effects. The obtained results are in good agreement with the expected behaviour of this disease, which ultimately showcases the effectiveness of our theory.


Author(s):  
Klaus Morawetz

The classical non-ideal gas shows that the two original concepts of the pressure based of the motion and the forces have eventually developed into drift and dissipation contributions. Collisions of realistic particles are nonlocal and non-instant. A collision delay characterizes the effective duration of collisions, and three displacements, describe its effective non-locality. Consequently, the scattering integral of kinetic equation is nonlocal and non-instant. The non-instant and nonlocal corrections to the scattering integral directly result in the virial corrections to the equation of state. The interaction of particles via long-range potential tails is approximated by a mean field which acts as an external field. The effect of the mean field on free particles is covered by the momentum drift. The effect of the mean field on the colliding pairs causes the momentum and the energy gains which enter the scattering integral and lead to an internal mechanism of energy conversion. The entropy production is shown and the nonequilibrium hydrodynamic equations are derived. Two concepts of quasiparticle, the spectral and the variational one, are explored with the help of the virial of forces.


2000 ◽  
Vol 61 (17) ◽  
pp. 11521-11528 ◽  
Author(s):  
Sergio A. Cannas ◽  
A. C. N. de Magalhães ◽  
Francisco A. Tamarit

2019 ◽  
Vol 46 (3) ◽  
pp. 54-55
Author(s):  
Thirupathaiah Vasantam ◽  
Arpan Mukhopadhyay ◽  
Ravi R. Mazumdar

Author(s):  
Feng Li ◽  
Gulnigar Ablat ◽  
Siqi Zhou ◽  
Yixin Liu ◽  
Yufeng Bi ◽  
...  

AbstractIn ice and snow weather, the surface texture characteristics of asphalt pavement change, which will significantly affect the skid resistance performance of asphalt pavement. In this study, five asphalt mixture types of AC-5, AC-13, AC-16, SMA-13, SMA-16 were prepared under three conditions of the original state, ice and snow. In this paper, a 2D-wavelet transform approach is proposed to characterize the micro and macro texture of pavement. The Normalized Energy (NE) is proposed to describe the pavement texture quantitatively. Compared with the mean texture depth (MTD), NE has the advantages of full coverage, full automation and wide analytical scale. The results show that snow increases the micro-scale texture because of its fluffiness, while the formation of the ice sheets on the surface reduces the micro-scale texture. The filling effect of snow and ice reduces the macro-scale texture of the pavement surface. In a follow-up study, the 2D-wavelet transform approach can be applied to improve the intelligent driving braking system, which can provide pavement texture information for the safe braking strategy of driverless vehicles.


2020 ◽  
Vol 31 (1) ◽  
Author(s):  
Hui Huang ◽  
Jinniao Qiu

AbstractIn this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions $$d=2,3$$ d = 2 , 3 . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.


Sign in / Sign up

Export Citation Format

Share Document