scholarly journals Modeling and Simulation for Multi-Rotor Fixed-Wing UAV Based on Multibody Dynamics

Author(s):  
Han Wu ◽  
Zhengping Wang ◽  
Zhou Zhou ◽  
Rui Wang

Accurate dynamic modeling lays foundation for design and control of UAV. The dynamic model for the multi-rotor fixed-wing UAV was looked into and it was divided into fuselage, air-body, multi-rotors, vertical fin, vertical tail and control surfaces, based on the multibody dynamics. The force and moment model for each body was established and derived into the Lagrange equation of the second king by virtual work. By electing quaternion as generalized coordinate and introducing Lagrangian multiplier, the dynamic modeling was deduced and established. Finally, the comparison between the simulation results and the experimental can be found that the present dynamic model accurately describes the process of dynamic change of this UAV and lay foundation for the control of UAV.

Author(s):  
Yue-Qing Yu ◽  
Qian Li ◽  
Qi-Ping Xu

An intensive study on the dynamic modeling and analysis of compliant mechanisms is presented in this paper based on the pseudo-rigid-body model. The pseudo-rigid-body dynamic model with single degree-of-freedom is proposed at first and the dynamic equation of the 1R pseudo-rigid-body dynamic model for a flexural beam is presented briefly. The pseudo-rigid-body dynamic models with multi-degrees-of-freedom are then derived in detail. The dynamic equations of the 2R pseudo-rigid-body dynamic model and 3R pseudo-rigid-body dynamic model for the flexural beams are obtained using Lagrange equation. Numerical investigations on the natural frequencies and dynamic responses of the three pseudo-rigid-body dynamic models are made. The effectiveness and superiority of the pseudo-rigid-body dynamic model has been shown by comparing with the finite element analysis method. An example of a compliant parallel-guiding mechanism is presented to investigate the dynamic behavior of the mechanism using the 2R pseudo-rigid-body dynamic model.


2021 ◽  
pp. 1-23
Author(s):  
Stefan Atay ◽  
Matthew Bryant ◽  
Gregory D. Buckner

Abstract This paper presents the dynamic modeling and control of a bi-modal, multirotor vehicle that is capable of omnidirectional terrestrial rolling and multirotor flight. It focuses on the theoretical development of a terrestrial dynamic model and control systems, with experimental validation. The vehicle under consideration may roll along the ground to conserve power and extend endurance but may also fly to provide high mobility and maneuverability when necessary. The vehicle employs a three-axis gimbal system that decouples the rotor orientation from the vehicle's terrestrial rolling motion. A dynamic model of the vehicle's terrestrial motion is derived from first principles. The dynamic model becomes the basis for a nonlinear trajectory tracking control system suited to the architecture of the vehicle. The vehicle is over-actuated while rolling, and the additional degrees of actuation can be used to accomplish auxiliary objectives, such as power optimization and gimbal lock avoidance. Experiments with a hardware vehicle demonstrate the efficacy of the trajectory tracking control system.


Author(s):  
Anthony Garcia ◽  
William Singhose ◽  
Aldo Ferri

When cranes lift payloads off the ground, the payload may slide sideways or swing unexpectedly. This motion occurs when the payload is not directly beneath the overhead suspension point of the hoist cable. Given that cable suspension points can be hundreds of feet above the payload, it is difficult for crane operators to know if the hoist cable is vertical before lifting the payload off the ground. If an off-center lift creates substantial horizontal motion, then it can create significant hazards for the operators, the payload, and the surrounding environment. This paper develops a three-dimensional dynamic model that predicts motions of off-centered lifts.


Author(s):  
Houman Dallali ◽  
Evandro Ficanha ◽  
Mohammad Rastgaar Aagaah

The first step to study and develop a two Degrees of Freedom (DOF) prosthesis is to derive a dynamic model for simulation and control design. In this paper, the ankle-foot prosthesis has controllable Dorsi-Plantarflexion (DP) and Inversion-Eversion (IE) DOF. We derive a compliant dynamic model for a recently developed ankle-foot prosthesis followed by identification of the actuators, transmission, and prosthetic foot parameters. The resulting model is then verified experimentally and in simulation. Dynamic decoupling of the actuators to the ankle’s DP and IE DOF is also investigated using Bode plots. The code used for simulating the prosthesis is provided on GitHub for the community.


Author(s):  
Haiping Wu ◽  
Jian Xu ◽  
Lifen Chen ◽  
Hongbin Fang

Abstract Origami provides a rich library and unique benefits for developing deployable structures. Comparing with the vast amount of progress in pattern design, static configuration analysis, and folding kinematics, research on the dynamics of origami deployable structures remains at the early stage. This paper presents our effects in developing an effective and addressable dynamic model for studying the transient dynamics of a Miura-origami tube consisting of stacked Miura-ori (SMO) cells. The Miura-ori tube, in an ideal scenario, is rigid-foldable and flat-foldable, and its folding can be described via a single-degree-of-freedom (DOF) mechanism. However, practically, these features cannot be fully satisfied in a real prototype. In this research, five assumptions are proposed for dynamic modeling purposes, which, on one hand, retain the key characteristics of folding, and on the other hand, significantly simplify the problem. With the five assumptions and based on the Lagrange Equation for the general case, the governing equation of the Miura-ori tube can be derived. Taking a six-cell Miura-ori tube under free deployment as an example, numerical analyses reveal that in addition to the decayed vibrations in the deploying direction, the tube would also exhibit significant transverse vibrations. The transient dynamics in both the deploying and the transverse directions can be quantified by the overshoot values and the settling times. Moreover, by increasing the additionally-introduced crease torsional stiffness, which is used to constrain the deviation between the folding of adjacent half SMO cells, the multiple-DOF dynamic model would degenerate into the single-DOF dynamic model. In such a scenario, only vibrations in the deploying direction are possible. The constructed model and the preliminary understanding of the transient dynamics could provide useful guidelines for designing and optimizing origami-based tubular deployable structures.


Author(s):  
Yujiong Liu ◽  
Pinhas Ben-Tzvi

For utilizing robotic tail to stabilize and maneuver a quadruped, it is important to understand the mechanism of how the tail motion influences the quadruped motion which requires obtaining an analytic dynamic model. This paper presents a systematic methodology for modeling the dynamics of a general quadruped (capable of all 6 DOF motions) with a robotic pendulum tail based on the virtual work principle. The formulation of this model is motivated by robotic tail research, it can also be used as an alternative approach to model the quadruped dynamics other than using Lagrangian and Newton-Euler based methods. Numerical simulations are also conducted to verify both the forward and the inverse model.


Author(s):  
Farshid Asadi ◽  
Ali Heydari

In this paper, an explicit dynamic model of Delta robot is obtained analytically. The main contribution of this work is that, unlike existing prior work, the final dynamics model is given directly in the form of [Formula: see text], with explicit expressions for M, C and G. This is of great importance, since many advanced control techniques like Optimal Control need dynamic model in an explicit form, i.e. time derivative of state vector given explicitly in terms of the states and control vectors. To this goal, first, velocity and acceleration analysis is done by differentiating robot's geometrical loops directly. Then, Jacobian matrices are calculated to have kinematic relations in a more compact form. After that, principle of virtual work is implemented to derive the dynamic equations. In this part, Jacobian matrices are substituted into dynamic model. This is unlike other referenced works on Delta robot dynamics that need to continue the derivation in symbolic software or derive the model implicitly. Using Jacobians, dramatically simplifies the final explicit dynamic model. Therefore, the final dynamic equations are calculated in a straightforward manner without any use of symbolic calculation software. After all, the presented model is verified with an experimental setup. The model shows good accuracy in terms of torque prediction.


2018 ◽  
Vol 18 (3) ◽  
pp. 481-497
Author(s):  
Mustafa T Hussein

This work is aimed to study the dynamic behavior and control of the triple invertedpendulumsystem. A nonlinear dynamic model of the inverted-pendulums fixed on a cart,based on CAD model is developed. The Lagrange equation is used to obtain the nonlineardynamic models of the system. The dynamic model is then linearized around operatingpoint. An augmented dynamic model using the linearized model is also derived. Two controlapproaches are used to stabilize the pendulums in vertical position. First approach: StateFeedback Control based on the linearized model is used to generate the input force control tostabilize the system. Second approach: Model Predictive Control is designed based onaugmented dynamic Model to control the motion of the system. In order to verify thedeveloped model and the chosen controller gains several simulations for different carts’paths are carried out. Several 3D animations are also presented to verify the usefulness ofthe designed CAD model and the controllers. As a future work: the 3D model of the tripleinverted-pendulum system gives a valuable resource for virtual reality work. Beside, anotheradvanced control approach can be applied on the derived dynamic model.


Author(s):  
Peter Mann

This chapter discusses virtual work, returning to the Newtonian framework to derive the central Lagrange equation, using d’Alembert’s principle. It starts off with a discussion of generalised force, applied force and constraint force. Holonomic constraints and non-holonomic constraint equations are then investigated. The corresponding principles of Gauss (Gauss’s least constraint) and Jourdain are also documented and compared to d’Alembert’s approach before being generalised into the Mangeron–Deleanu principle. Kane’s equations are derived from Jourdain’s principle. The chapter closes with a detailed covering of the Gibbs–Appell equations as the most general equations in classical mechanics. Their reduction to Hamilton’s principle is examined and they are used to derive the Euler equations for rigid bodies. The chapter also discusses Hertz’s least curvature, the Gibbs function and Euler equations.


Sign in / Sign up

Export Citation Format

Share Document