scholarly journals CAD DESIGN AND CONTROL OF TRIPLE INVERTED-PENDULUMS SYSTEM

2018 ◽  
Vol 18 (3) ◽  
pp. 481-497
Author(s):  
Mustafa T Hussein

This work is aimed to study the dynamic behavior and control of the triple invertedpendulumsystem. A nonlinear dynamic model of the inverted-pendulums fixed on a cart,based on CAD model is developed. The Lagrange equation is used to obtain the nonlineardynamic models of the system. The dynamic model is then linearized around operatingpoint. An augmented dynamic model using the linearized model is also derived. Two controlapproaches are used to stabilize the pendulums in vertical position. First approach: StateFeedback Control based on the linearized model is used to generate the input force control tostabilize the system. Second approach: Model Predictive Control is designed based onaugmented dynamic Model to control the motion of the system. In order to verify thedeveloped model and the chosen controller gains several simulations for different carts’paths are carried out. Several 3D animations are also presented to verify the usefulness ofthe designed CAD model and the controllers. As a future work: the 3D model of the tripleinverted-pendulum system gives a valuable resource for virtual reality work. Beside, anotheradvanced control approach can be applied on the derived dynamic model.

Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 71
Author(s):  
Luz M. Sanchez-Rivera ◽  
Rogelio Lozano ◽  
Alfredo Arias-Montano

Hybrid Unmanned Aerial Vehicles (H-UAVs) are currently a very interesting field of research in the modern scientific community due to their ability to perform Vertical Take-Off and Landing (VTOL) and Conventional Take-Off and Landing (CTOL). This paper focuses on the Dual Tilt-wing UAV, a vehicle capable of performing both flight modes (VTOL and CTOL). The UAV complete dynamic model is obtained using the Newton–Euler formulation, which includes aerodynamic effects, as the drag and lift forces of the wings, which are a function of airstream generated by the rotors, the cruise speed, tilt-wing angle and angle of attack. The airstream velocity generated by the rotors is studied in a test bench. The projected area on the UAV wing that is affected by the airstream generated by the rotors is specified and 3D aerodynamic analysis is performed for this region. In addition, aerodynamic coefficients of the UAV in VTOL mode are calculated by using Computational Fluid Dynamics method (CFD) and are embedded into the nonlinear dynamic model. To validate the complete dynamic model, PD controllers are adopted for altitude and attitude control of the vehicle in VTOL mode, the controllers are simulated and implemented in the vehicle for indoor and outdoor flight experiments.


Robotica ◽  
1998 ◽  
Vol 16 (6) ◽  
pp. 607-613 ◽  
Author(s):  
J. H. Chung ◽  
S. A. Velinsky

This paper concerns the modeling and control of a mobile manipulator which consists of a robotic arm mounted upon a mobile platform. The equations of motion are derived using the Lagrange-d'Alembert formulation for the nonholonomic model of the mobile manipulator. The dynamic model which considers slip of the platform's tires is developed using the Newton-Euler method and incorporates Dugoff's tire friction model. Then, the tracking problem is investigated by using a well known nonlinear control method for the nonholonomic model. The adverse effect of the wheel slip on the tracking of commanded motion is discussed in the simulation. For the dynamic model, a variable structure control approach is employed to minimize the harmful effect of the wheel slip on the tracking performance. The simulation results demonstrate the effectiveness of the proposed control algorithm.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Qing Li

Due to the demands from the robotic industry, robot structures have evolved from serial to parallel. The control of parallel robots for high performance and high speed tasks has always been a challenge to control engineers. Following traditional control engineering approaches, it is possible to design advanced algorithms for parallel robot control. These approaches, however, may encounter problems such as heavy computational load and modeling errors, to name it a few. To avoid heavy computation, simplified dynamic models can be obtained by applying approximation techniques, nevertheless, performance accuracy will suffer due to modeling errors. This paper suggests applying an integrated design and control approach, i.e., the Design For Control (DFC) approach, to handle this problem. The underlying idea of the DFC approach can be illustrated as follows: Intuitively, a simple control algorithm can control a structure with a simple dynamic model quite well. Therefore, no matter how sophisticate a desired motion task is, if the mechanical structure is designed such that it results in a simple dynamic model, then, to design a controller for this system will not be a difficult issue. As such, complicated control design can be avoided, on-line computation load can be reduced and better control performance can be achieved. Through out the discussion in the paper, a 2 DOF parallel robot is redesigned based on the DFC concept in order to obtain a simpler dynamic model based on a mass-balancing method. Then a simple PD controller can drive the robot to achieve accurate point-to-point tracking tasks. Theoretical analysis has proven that the simple PD control can guarantee a stable system. Experimental results have successfully demonstrated the effectiveness of this integrated design and control approach.


2011 ◽  
Vol 66-68 ◽  
pp. 1748-1754
Author(s):  
Yu Liu ◽  
Yi Lin Wu

Based on the Kirchhoff equations, Newton-Euler laws, boundary layer theory and mass definition, the six degrees of freedom dynamic model of airship complete with aerodynamic forces, wind effect is presented. Then, the nonlinear dynamic model is divided into three group equations by restricting airship motion in different planes respectively. The motion characteristics of airship, including stability, the effect of ballast position and rotational damping, are studied using linearized model. The results of simulation verify the correctness of the theoretical analysis and airship design.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dewei Zhang ◽  
Hui Qi ◽  
Xiande Wu ◽  
Yaen Xie ◽  
Jiangtao Xu

A reliable nonlinear dynamic model of the quadrotor is presented. The nonlinear dynamic model includes actuator dynamic and aerodynamic effect. Since the rotors run near a constant hovering speed, the dynamic model is simplified at hovering operating point. Based on the simplified nonlinear dynamic model, the PID controllers with feedback linearization and feedforward control are proposed using the backstepping method. These controllers are used to control both the attitude and position of the quadrotor. A fully custom quadrotor is developed to verify the correctness of the dynamic model and control algorithms. The attitude of the quadrotor is measured by inertia measurement unit (IMU). The position of the quadrotor in a GPS-denied environment, especially indoor environment, is estimated from the downward camera and ultrasonic sensor measurements. The validity and effectiveness of the proposed dynamic model and control algorithms are demonstrated by experimental results. It is shown that the vehicle achieves robust vision-based hovering and moving target tracking control.


Author(s):  
Han Wu ◽  
Zhengping Wang ◽  
Zhou Zhou ◽  
Rui Wang

Accurate dynamic modeling lays foundation for design and control of UAV. The dynamic model for the multi-rotor fixed-wing UAV was looked into and it was divided into fuselage, air-body, multi-rotors, vertical fin, vertical tail and control surfaces, based on the multibody dynamics. The force and moment model for each body was established and derived into the Lagrange equation of the second king by virtual work. By electing quaternion as generalized coordinate and introducing Lagrangian multiplier, the dynamic modeling was deduced and established. Finally, the comparison between the simulation results and the experimental can be found that the present dynamic model accurately describes the process of dynamic change of this UAV and lay foundation for the control of UAV.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3608 ◽  
Author(s):  
Qianqian Wu ◽  
Ning Cui ◽  
Sifang Zhao ◽  
Hongbo Zhang ◽  
Bilong Liu

The environment in space provides favorable conditions for space missions. However, low frequency vibration poses a great challenge to high sensitivity equipment, resulting in performance degradation of sensitive systems. Due to the ever-increasing requirements to protect sensitive payloads, there is a pressing need for micro-vibration suppression. This paper deals with the modeling and control of a maglev vibration isolation system. A high-precision nonlinear dynamic model with six degrees of freedom was derived, which contains the mathematical model of Lorentz actuators and umbilical cables. Regarding the system performance, a double closed-loop control strategy was proposed, and a sliding mode control algorithm was adopted to improve the vibration isolation performance. A simulation program of the system was developed in a MATLAB environment. A vibration isolation performance in the frequency range of 0.01–100 Hz and a tracking performance below 0.01 Hz were obtained. In order to verify the nonlinear dynamic model and the isolation performance, a principle prototype of the maglev isolation system equipped with accelerometers and position sensors was developed for the experiments. By comparing the simulation results and the experiment results, the nonlinear dynamic model of the maglev vibration isolation system was verified and the control strategy of the system was proved to be highly effective.


2017 ◽  
Vol 2 (4) ◽  
pp. 218-227
Author(s):  
Fouad INEL ◽  
Youcef ZENNIR

In this paper we present a new control architecture based on the robust sliding mode control applied to control a nonlinear system (parallel cable robot). This approach is widely used to address the uncertainties and disturbances of nonlinear systems and to improve the performance of the robot in terms of tracking a desired path. A dynamic model is presented followed by the description of the control approach used. To do this, numerical simulations were carried out by developing a specific code including a graphical user interface for a user-friendly real time. The simulation results for a dynamic model with sliding mode control are discussed for different trajectories applied to this robot, to confirm the validity of accurate tracking of a desired path before future work description.


2017 ◽  
pp. 78-82
Author(s):  
L. G. Tugashova ◽  
K. L. Gorshkova

The approaches to improve the management of processes of oil refining. The description of the control model and the adjustment of the coefficients of the controller by using genetic algorithm. Selected basic adjustable parameters and control actions. The main components of the control circuit for the models are: limitations of the regression model, nonlinear dynamic model, the unit of optimization.


Sign in / Sign up

Export Citation Format

Share Document