The possibilities of using the acoustic emission method in expert systems for the evaluation of insulation systems of power transformers

2006 ◽  
Vol 137 ◽  
pp. 51-56 ◽  
Author(s):  
T. Boczar ◽  
S. Borucki ◽  
A. Cichoń ◽  
M. Lorenc ◽  
D. Zmarzły
2020 ◽  
pp. 40-44
Author(s):  
V. V. Bardakov ◽  
S. V. Elizarov ◽  
V. A. Barat ◽  
V. G. Kharebov ◽  
K. A. Medvedev

Testing results of power transformers insulation for the presence of insulation defects, accompanied by the partial discharges occurrence, by means of the acoustic emission method are presented in this article. In particular, the testing of two power transformers with different lifetime was carried out. One transformer was defect-free and one with a willing insulation defect. Based on the testing results, the features of acoustic emission data for power transformers in the presence of partial discharges are found. High sensitivity of acoustic emission method for acoustic wave registration from partial discharges is shown in the article. A method for filtering of noise hits and extraction of hits from partial discharges is proposed. This method is based on excretion of acoustic emission hits from partial discharges out of total number of hits by means of periodicity of their registration, which is synchronized with power supply frequency on the first step. On the next step based on acoustic emission parameters of hits excretion on the previous step, filtration was carried out. The location of the insulation defect which led to the appearance of partial discharges was determined based on the volume location algorithm, by means of acoustic emission method. The insulation defect was confirmed by verification.


Materials ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Justyna Zapała-Sławeta ◽  
Grzegorz Świt

The study analyzed the possibility of using the acoustic emission method to analyse the reaction of alkali with aggregate in the presence of lithium nitrate. Lithium nitrate is a chemical admixture used to reduce adverse effects of corrosion. The tests were carried out using mortars with reactive opal aggregate, stored under the conditions defined by ASTM C227. The acoustic activity of mortars with a corrosion inhibitor was referred to linear changes and microstructure of specimens in the initial reaction stages. The study found a low acoustic activity of mortars with lithium nitrate. Analysis of characteristic parameters of acoustic emission signals, combined with the observation of changes in the microstructure, made it possible to describe the corrosion processes. As the reaction progressed, signals with different characteristics were recorded, indicating aggregate cracking at the initial stage of the reaction, followed by cracking of the cement paste. The results, which were referred to the acoustic activity of reference mortars, confirmed that the reaction of opal aggregate with alkali was mitigated in mortars with lithium nitrate, and the applied acoustic emission method enabled the detection and monitoring of ASR progress.


2016 ◽  
Vol 837 ◽  
pp. 198-202
Author(s):  
Luboš Pazdera ◽  
Libor Topolář ◽  
Tomáš Vymazal ◽  
Petr Daněk ◽  
Jaroslav Smutny

The aim of the paper is focused on the analysis of the mechanical properties of the concrete specimens with plasticizer at three point bending test by the signal analysis of the acoustic emission signal. The evaluations were compared the measurement and the results obtained with theoretical presumptions. The Joint Time Frequency Analysis applied on measurement data and its evaluation is described. It is well known that the Acoustic Emission Method is a very sensitive method to determine active cracks into structure. However, evaluation of acoustic emission signals is very difficult. A non-traditional method was used to signal analysis of burst acoustic emission signals recorded during three point bending test.


2014 ◽  
Vol 7 (2) ◽  
pp. 703-709 ◽  
Author(s):  
Kazuho Mizuta ◽  
Yukio Nishizawa ◽  
Koji Sugimoto ◽  
Katsuya Okayama ◽  
Alan Hase

Sign in / Sign up

Export Citation Format

Share Document