Viscoelastic relaxation of insoluble monomolecular films

1988 ◽  
Vol 49 (7) ◽  
pp. 1271-1293 ◽  
Author(s):  
J.C. Earnshaw ◽  
R.C. McGivern ◽  
P.J. Winch
1972 ◽  
Vol 13 (2) ◽  
pp. 253-255
Author(s):  
Norman D. Weiner ◽  
Papavadee Noomnont ◽  
Alvin Felmeister

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Valery V. Prokhorov ◽  
Nikolay A. Barinov ◽  
Kirill A. Prusakov ◽  
Evgeniy V. Dubrovin ◽  
Maxim D. Frank-Kamenetskii ◽  
...  

Highlights DNA kinking is inevitable for the highly anisotropic 1D–1D electrostatic interaction with the one-dimensionally periodically charged surface. The double helical structure of the DNA kinetically trapped on positively charged monomolecular films comprising the lamellar templates is strongly laterally stressed and extremely perturbed at the nanometer scale. The DNA kinetic trapping is not a smooth 3D—> 2D conformational flattening but is a complex nonlinear in-plane mechanical response (bending, tensile and unzipping) driven by the physics beyond the scope of the applicability of the linear worm-like chain approximation. Abstract Up to now, the DNA molecule adsorbed on a surface was believed to always preserve its native structure. This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated. High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled. We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress (> 30 pNnm) inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges. In addition, the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity. The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending. The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics. The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear. The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.


1997 ◽  
Vol 107 (18) ◽  
pp. 7493-7501 ◽  
Author(s):  
D. Sharpe ◽  
J. C. Earnshaw

1966 ◽  
Vol 39 (4) ◽  
pp. 870-880 ◽  
Author(s):  
R. Chasset ◽  
P. Thirion

Abstract In agreement with the results of dynamic experiments of Stratton and Ferry, this study of relaxation of rubber vulcanizates entirely confirms the existence of peculiar, slow, viscoelastic processes in high polymer networks. Characteristic differences with the rheological behavior of unvulcanized polymers are best reflected by the shape of the end of the distribution functions of relaxation times. The box distribution found for free chains is replaced, for crosslinked polymers, by a long incline extending during several decades of time. The slope of this linear part of the spectrum is only slightly dependent on nature of the polymer and type of vulcanizate. On the other hand, the position of the incline along the time scale is very sensitive to the mean molecular weight Mc of the vulcanizates, by far the most important factor controlling the phenomenon. The downward deviations observed at the end of the incline also occur later for larger values of Mc. A useful step towards theoretical understanding of this behavior should be a quantitative knowledge of the effect of molecular weight in a broader range of Mc than studied here. If the chain entanglements are of primary importance, as considered probable by Ferry it seems that some singularity should occur for a critical molecular weight fitting the corresponding value for the viscosity of free chains. The role of crosslink mobility might be tested by comparing the relaxation of ordinary random vulcanizates with that of eventually more regular polybutadiene networks prepared by end group crosslinking of carboxy-terminated and mono-disperse chains. In fact, the displacement of a crosslink away from its affine position requires, apart from the Brownian fluctuations, an unbalance between the forces exerted by the four radiating chains. This implies that the lengths of the strands present large differences and that the shortest chains are approaching their limit of extensibility. As the latter condition can hardly be fullfilled at small deformations, it seems doubtful that this mechanism may be predominant either for dynamic properties or the relaxation experiments reported here. Another cause sometimes invoked is the presence of free chains attached to the networks and we are presently studying their effect on viscoelastic relaxation. At this stage, it is already apparent that they do not have a large effect, as might be expected on theoretical grounds. In our opinion, special attention should be paid to the reason why the experimentally found relaxation times are so large, in spite of the relatively short average length of the network strands. If the usual notion of entanglements developed for free chains, as an extension of the Rouse theory, should fail in this respect, it would be necessary to reconsider the non-equilibrium statistics of single chains with fixed ends, taking into account the proper inter- and intramolecular forces hindering their motion. This more direct approach to the problem, already outlined by Kirkwood, ought to express mathematically the fact that the presence of crosslinks tends to prevent longitudinal slippage of large parts of the chains. The slow changes of configuration should occur therefore rather through lateral motions to which the neighboring medium opposes a much greater resistance.


2010 ◽  
Vol 347 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Habib Horchani ◽  
Nadia Ben Salem ◽  
Ali Chaari ◽  
Adel Sayari ◽  
Youssef Gargouri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document