Viscoelastic Relaxation of Rubber Vulcanizates Between the Glass Transition and Equilibrium

1966 ◽  
Vol 39 (4) ◽  
pp. 870-880 ◽  
Author(s):  
R. Chasset ◽  
P. Thirion

Abstract In agreement with the results of dynamic experiments of Stratton and Ferry, this study of relaxation of rubber vulcanizates entirely confirms the existence of peculiar, slow, viscoelastic processes in high polymer networks. Characteristic differences with the rheological behavior of unvulcanized polymers are best reflected by the shape of the end of the distribution functions of relaxation times. The box distribution found for free chains is replaced, for crosslinked polymers, by a long incline extending during several decades of time. The slope of this linear part of the spectrum is only slightly dependent on nature of the polymer and type of vulcanizate. On the other hand, the position of the incline along the time scale is very sensitive to the mean molecular weight Mc of the vulcanizates, by far the most important factor controlling the phenomenon. The downward deviations observed at the end of the incline also occur later for larger values of Mc. A useful step towards theoretical understanding of this behavior should be a quantitative knowledge of the effect of molecular weight in a broader range of Mc than studied here. If the chain entanglements are of primary importance, as considered probable by Ferry it seems that some singularity should occur for a critical molecular weight fitting the corresponding value for the viscosity of free chains. The role of crosslink mobility might be tested by comparing the relaxation of ordinary random vulcanizates with that of eventually more regular polybutadiene networks prepared by end group crosslinking of carboxy-terminated and mono-disperse chains. In fact, the displacement of a crosslink away from its affine position requires, apart from the Brownian fluctuations, an unbalance between the forces exerted by the four radiating chains. This implies that the lengths of the strands present large differences and that the shortest chains are approaching their limit of extensibility. As the latter condition can hardly be fullfilled at small deformations, it seems doubtful that this mechanism may be predominant either for dynamic properties or the relaxation experiments reported here. Another cause sometimes invoked is the presence of free chains attached to the networks and we are presently studying their effect on viscoelastic relaxation. At this stage, it is already apparent that they do not have a large effect, as might be expected on theoretical grounds. In our opinion, special attention should be paid to the reason why the experimentally found relaxation times are so large, in spite of the relatively short average length of the network strands. If the usual notion of entanglements developed for free chains, as an extension of the Rouse theory, should fail in this respect, it would be necessary to reconsider the non-equilibrium statistics of single chains with fixed ends, taking into account the proper inter- and intramolecular forces hindering their motion. This more direct approach to the problem, already outlined by Kirkwood, ought to express mathematically the fact that the presence of crosslinks tends to prevent longitudinal slippage of large parts of the chains. The slow changes of configuration should occur therefore rather through lateral motions to which the neighboring medium opposes a much greater resistance.

Measurements have been made of the viscoelastic properties of a range of poly-1-butene liquids of different molecular weights under cyclic shearing stress. The five liquids studied range in steady-flow viscosity at 20 °C from 5.5 to 9330 P corresponding to number average molecular weights from 448 to 2700. Measurements over the temperature range – 60 to +90 °C were made at frequencies of alternating shear of 64 kc/s, 6, 18 and 30 Mc/s. The liquid of lowest molecular weight (448) was nominally pure, having eight repeat units, while the remaining four each had a distribution of molecular weights. In all cases, the dependence of steady flow viscosity upon temperature follows the equation In η = A + B /(T - T 0 ), (1) which is derived from the free-volume equation with a linear dependence of density upon temperature. Recent measurements on a wide range of pure liquids which have viscosities described by equation (1) have been interpreted in terms of a simple phenomenological model for viscoelastic relaxation which allows the behaviour to be predicted (Barlow, Erginsav & Lamb 1967 b ). Analysis of the present results on the liquid of lowest molecular weight shows that the measured behaviour can also be described by this model. For the four liquids of higher molecular weight a second relaxation process is found at lower frequencies. This is attributed to the increased chain length of the molecules giving rise to 'quasi-Rouse’ modes of motion. At low frequencies the results for these four liquids show a behaviour intermediate between that of a simple liquid and that exhibited by a long chain polymer which conforms to the extended form of the Rouse theory.


1975 ◽  
Vol 48 (5) ◽  
pp. 981-994 ◽  
Author(s):  
P. Thirion

Abstract The molecular theory of Rouse, Zimm, and Bueche correctly accounts for the viscoelastic properties of polymers in very dilute solution and, to a large extent, for those of polymers in bulk or in concentrated solution, as long as their mean molecular weight is below about 20 000. Above this MW limit, relaxation times appear which are longer than those provided for in this theory. The “viscoelastic plateau”, which then appears in the long relaxation time region of the dynamic spectrum, is ascribed to entanglements of molecular chains which behave like temporary crosslinks. An analogous phenomenon occurs in the same way in permanent polymer networks, such as rubber vulcanizates. In this case one finds abnormally slow relaxation or creep rates during the approach to equilibrium, as well as increased low-frequency mechanical energy losses under forced sinusoidal vibration. The presence of colloidal fillers, such as carbon blacks used to reinforce rubbers, also seems to increase this hysteresis within the polymer matrix, independent of thixotropic effects which result from the reversible rupture of filler particle aggregates under large-amplitude cyclic deformations. We propose to analyze here the results (obtained jointly at the Institut Français du Caoutchouc and at the laboratory of Professor J. D. Ferry, University of Wisconsin) of measurements over the entire rubbery spectrum of the dynamic properties and of stress relaxation on vulcanizates of natural rubber, cis-polybutadiene, and styrene-butadiene copolymer (SBR) in the absence of secondary crystallization or aging phenomena. Then we examine the interpretation of the behavior of these materials, both at low frequency and during the approach to equilibrium, by analogy with the theories of the “viscoelastic plateau” of linear polymers.


1952 ◽  
Vol 25 (4) ◽  
pp. 720-729 ◽  
Author(s):  
John D. Ferry ◽  
Edwin R. Fitzgerald ◽  
Lester D. Grandine ◽  
Malcolm L. Williams

Abstract By the use of reduced variables, the temperature dependence and frequency dependence of dynamic mechanical properties of rubberlike materials can be interrelated without any arbitrary assumptions about the functional form of either The definitions of the reduced variables are based on some simple assumptions regarding the nature of relaxation processes. The real part of the reduced dynamic rigidity, plotted against the reduced frequency, gives a single composite curve for data over wide ranges of frequency and temperature; this is true also for the imaginary part of the rigidity or the dynamic viscosity. The real and imaginary parts of the rigidity, although independent measurements, are interrelated through the distribution function of relaxation times, and this relation provides a check on experimental results. First and second approximation methods of calculating the distribution function from dynamic data are given. The use of the distribution function to predict various types of time-dependent mechanical behavior is illustrated.


1971 ◽  
Vol 44 (5) ◽  
pp. 1256-1272 ◽  
Author(s):  
P. Thirion ◽  
R. Chasset

Abstract The influence of temperature, elongation, swelling or dilution ratio, crosslink density, nature of the polymers, and crosslinking agents on the dynamic properties, creep and relaxation of polymer networks is surveyed in the terminal region of the spectrum. Whereas the deformation does not change the relaxation kinetics in large ranges of extension, the crosslink density acts as a reduced variable apparently accelerating uniformly the viscoelastic processes beyond the glass transition. The other possible reductions ‘time-temperature’ and ‘time—swelling’ do not necessarily seem related to the variations of free volume. From the viewpoint of the explanation of the relaxation mechanisms in the terminal zone, the fact that the equilibrium of loosely crosslinked elastomers would only virtually be reached after several years at room temperature seem in better agreement with chain entanglement effects, either trapped or not by the permanent network, than with the dissociation of secondary linkages.


2021 ◽  
Vol 0 (2) ◽  
pp. 36-43
Author(s):  
N.V. Shadrinov ◽  
◽  
A.A. Khristoforova ◽  

The results of the study of the complex of properties of an elastomeric composite material based on nitrile butadiene rubber BNKS-18 and ultrahigh molecular weight polyethylene are presented. The effect of UHMWPE on the vulcanization characteristics of rubber compounds, the physicomechanical properties of vulcanizates before and after thermal aging in a hydrocarbon environment and air, and also on the dynamic properties before and after curing are investigated.


1999 ◽  
Vol 559 ◽  
Author(s):  
F.M. Aliev ◽  
M. Kreuzer ◽  
Yu.P. Panarin

ABSTRACTNematic liquid crystal filled with Aerosil particles, a prospective composite material for optoelectronic application, has been investigated by static light scattering and Photon Correlation Spectroscopy (PCS). The Aerosil particles in filled nematic liquid crystals (FN) form a network structure with LC domains about 2500 Å in size with a random distribution of the director orientation of each domain.We found that the properties of 5CB are considerably affected by the network. The N-I phase transition in filled 5CB was found to be smeared out and depressed. PCS experiments show that two new relaxation processes appear in filled 5CB in addition to the director fluctuation process in bulk. The slow relaxation process, with a broad spectrum of relaxation times, is somewhat similar to the slow decay, which is observed in confined nematic liquid crystal.The middle frequency process was assigned to the director fluctuations in the surface layer formed at the particle-LC interface. The decay function describing this relaxation process is a stretched exponential (β ≍ 0.7). The temperature dependence of the relaxation times of the middle frequency obeys the Vogel-Rilcher law. Such a temperature dependence, accompanied by a broad spectrum of relaxation times suggests that the dynamics of the director fluctuations near the Aerosil particle-LC interface is glass-like.


1979 ◽  
Vol 34 (1-2) ◽  
pp. 20-26 ◽  
Author(s):  
Ingrid Pilz ◽  
Karin Goral ◽  
Friedrich v. d. Haar

Abstract The quaternary structure of the phenylalanyl-tRNA synthetase and its complex with tRNAPhe was studied in dilute solutions by small angle X-ray scattering. For the free synthetase the radius of gyration was determined as 5.5 nm, the volume 523 nm3, the maximum diameter 17.5 nm and the molecular weight as 260 000 using an isopotential specific volume of 0.735. The overall shape could be best approximated by a flat cylinder with dimensions 18.2 nm X 11.5 nm X 4 nm ; the loose structure was approximated by building up the cylinder by spheres (diameter 4.2 nm).The corresponding parameters of the enzyme tRNA complex were the following: radius of gyration 5.9 nm, volume 543 nm 3, maximum diameter 21 nm and molecular weight 290 000. These parameters suggest an 1:1 complex, whereby it must be assumed that the tRNA molecule is attached in the extension of the longer axis. From the difference in the distance distribution functions of the free enzyme and the complex it is evident that we have to assume a change of conformation (contraction) of the enzyme upon the binding of the specific tRNA.


Sign in / Sign up

Export Citation Format

Share Document