X-RAY STUDIES RELATED TO COATING THICKNESS MEASUREMENTS

1984 ◽  
Vol 45 (C2) ◽  
pp. C2-33-C2-36 ◽  
Author(s):  
D. A. Sewell ◽  
I. D. Hall ◽  
G. Love ◽  
J. P. Partridge ◽  
V. D. Scott
2012 ◽  
Vol 9 (12) ◽  
pp. 3551-3559 ◽  
Author(s):  
Isabelle-Sophie Russe ◽  
Daniela Brock ◽  
Klaus Knop ◽  
Peter Kleinebudde ◽  
J. Axel Zeitler

Author(s):  
C. W. Price ◽  
E. F. Lindsey

Thickness measurements of thin films are performed by both energy-dispersive x-ray spectroscopy (EDS) and x-ray fluorescence (XRF). XRF can measure thicker films than EDS, and XRF measurements also have somewhat greater precision than EDS measurements. However, small components with curved or irregular shapes that are used for various applications in the the Inertial Confinement Fusion program at LLNL present geometrical problems that are not conducive to XRF analyses but may have only a minimal effect on EDS analyses. This work describes the development of an EDS technique to measure the thickness of electroless nickel deposits on gold substrates. Although elaborate correction techniques have been developed for thin-film measurements by x-ray analysis, the thickness of electroless nickel films can be dependent on the plating bath used. Therefore, standard calibration curves were established by correlating EDS data with thickness measurements that were obtained by contact profilometry.


2020 ◽  
Vol 26 (3) ◽  
pp. 469-483
Author(s):  
Nicholas W. M. Ritchie

AbstractThis is the first in a series of articles which present a new framework for computing the standard uncertainty in electron excited X-ray microanalysis measurements. This article will discuss the framework and apply it to a handful of simple, but useful, subcomponents of the larger problem. Subsequent articles will handle more complex aspects of the measurement model. The result will be a framework in which sophisticated and practical models of the uncertainty for real-world measurements. It will include many long overlooked contributions like surface roughness and coating thickness. The result provides more than just error bars for our measurements. It also provides a framework for measurement optimization and, ultimately, the development of an expert system to guide both the novice and expert to design more effective measurement protocols.


2012 ◽  
Vol 45 (5) ◽  
pp. 906-913 ◽  
Author(s):  
Herve Palancher ◽  
Anne Bonnin ◽  
Veijo Honkimäki ◽  
Heikki Suhonen ◽  
Peter Cloetens ◽  
...  

This article describes a single-shot methodology to derive an average coating thickness in multi-particle core–shell systems exhibiting high X-ray absorption. Powder composed of U–Mo alloy particles surrounded by a micrometre-thick UO2protective layer has been used as a test sample. Combining high-energy X-ray diffraction and laser granulometry, the average shell thickness could be accurately characterized. These results have been validated by additional measurements on single particles by two techniques: X-ray nanotomography and high-energy X-ray diffraction. The presented single-shot approach gives rise to many potential applications on core–shell systems and in particular on as-fabricated heterogeneous nuclear fuels.


1991 ◽  
pp. 567-575 ◽  
Author(s):  
Y. Hirose ◽  
N. Takano ◽  
Y. Nanayama ◽  
T. Mura

1986 ◽  
Vol 1 (5) ◽  
pp. 629-634 ◽  
Author(s):  
J.W. McCamy ◽  
M.J. Godbole ◽  
A.J. Pedraza ◽  
D.H. Lowndes

A simple, precise method for obtaining the average thickness of an amorphous layer formed by any surface treatment has been developed. The technique uses an x-ray diffractoeter to measure the reduction in the integrated intensity of several diffracted x-ray lines due to the near surface amorphous layer. The target material for generation of x rays is selected so that the emitted x rays are strongly absorbed by the specimen. This method permits thickness measurements down to ∼ 100 nm. It has been tested on a specimen of Fe80B20 on which an amorphous layer was produced by pulsed XeCl (308 nm) laser irradiation; the amorphous layer thickness was found to be 1.34 (∼0.1) um.


Sign in / Sign up

Export Citation Format

Share Document