scholarly journals Multiple scale structure of non wetting fluid invasion fronts in 3D model porous media

1985 ◽  
Vol 46 (24) ◽  
pp. 1163-1171 ◽  
Author(s):  
E. Clément ◽  
C. Baudet ◽  
J.P. Hulin
1992 ◽  
Vol 69 (26) ◽  
pp. 3731-3734 ◽  
Author(s):  
Shanjin He ◽  
Galathara L. M. K. S. Kahanda ◽  
Po-zen Wong

Author(s):  
Shabina Ashraf ◽  
Jyoti Phirani

Abstract Capillary impregnation of viscous fluids in porous media is useful in diagnostics, design of lab-on-chip devices and enhanced oil recovery. The impregnation of a wetting fluid in a homogeneous porous medium follows Washburn’s diffusive law. The diffusive dynamics predicts that, with the increase in permeability, the rate of spontaneous imbibition of a wetting fluid also increases. As most of the naturally occurring porous media are composed of hydrodynamically interacting layers having different properties, the impregnation in a heterogeneous porous medium is significantly different from a homogeneous porous medium. A Washburn like model has been developed in the past to predict the imbibition behavior in the layers for a hydrodynamically interacting three layered porous medium filled with a non-viscous resident phase. It was observed that the relative placement of the layers impacts the imbibition phenomena significantly. In this work, we develop a quasi one-dimensional lubrication approximation to predict the imbibition dynamics in a hydrodynamically interacting multi-layered porous medium. The generalized model shows that the arrangement of layers strongly affects the saturation of wetting phase in the porous medium, which is crucial for oil recovery and in microfluidic applications.


2020 ◽  
Vol 60 (1) ◽  
pp. 315
Author(s):  
Jimmy X. Li ◽  
Reza Rezaee ◽  
Tobias M. Müller ◽  
Mohammad Sarmadivaleh

Elastic waves have widely been used as a non-destructive probing method in oilfield exploration and development, and the most well-known applications are in seismic exploration and borehole sonic logging. For waves in porous media, it is popular to use the Biot theory, which incorporates the wave-induced global flow, accounting for the frictional attenuation. The Biot theory assumes that the fluid is wetting to the solid matrix. However, the fluid is not always wetting the rock in real reservoirs. It was previously revealed that a non-wetting fluid parcel tends to slip on the solid wall pore boundary where the intermolecular potential between the fluid and solid wall is weaker than in wetting fluid conditions. This particular slippage feature means that the coupling relationship between the fluid and solid frame and frictional dissipation is likely to be very different between non-wetting and wetting fluid situations. We characterise this wave-induced slippage using an apparent viscosity for the non-wetting fluid within the thin viscous boundary layer. This apparent viscosity is smaller than the viscosity of the bulk fluid. We demonstrate that the slip correction affects the dynamic permeability and dynamic tortuosity and results in slippage/wettability dependent phase velocities and attenuation of the fully fluid-saturated rock.


2002 ◽  
Vol 466 ◽  
pp. 343-363 ◽  
Author(s):  
C. GEINDREAU ◽  
J.-L. AURIAULT

The aim of this work is to investigate the tensorial filtration law in rigid porous media for steady-state slow flow of an electrically conducting, incompressible and viscous Newtonian fluid in the presence of a magnetic field. The seepage law under a magnetic field is obtained by upscaling the flow at the pore scale. The macroscopic magnetic field and electric flux are also obtained. We use the method of multiple-scale expansions which gives rigorously the macroscopic behaviour without any preconditions on the form of the macroscopic equations. For finite Hartmann number, i.e. ε [Lt ] Ha [Lt ] ε−1, and finite load factor, i.e. ε [Lt ] [Kscr ] [Lt ] ε−1, where ε characterizes the separation of scales, the macroscopic mass flow and electric current are coupled and both depend on the macroscopic gradient of pressure and the electric field. The effective coefficients satisfy the Onsager relations. In particular, the filtration law is shown to resemble Darcy's law but with an additional term proportional to the electric field. The permeability tensor, which strongly depends on the magnetic induction, i.e. Hartmann number, is symmetric, positive and satisfies the filtration analogue of the Hall effect.


2018 ◽  
Vol 126 (1) ◽  
pp. 1-4
Author(s):  
Mohaddeseh Mousavi Nezhad ◽  
Mohammad Rezania ◽  
Vahid Joekar-Niasar

2011 ◽  
Vol 686 ◽  
pp. 40-76 ◽  
Author(s):  
A. Parmigiani ◽  
C. Huber ◽  
O. Bachmann ◽  
B. Chopard

AbstractReactive processes associated with multiphase flows play a significant role in mass transport in unsaturated porous media. For example, the effect of reactions on the solid matrix can affect the formation and stability of fingering instabilities associated with the invasion of a buoyant non-wetting fluid. In this study, we focus on the formation and stability of capillary channels of a buoyant non-wetting fluid (developed because of capillary instabilities) and their impact on the transport and distribution of a reactant in the porous medium. We use a combination of pore-scale numerical calculations based on a multiphase reactive lattice Boltzmann model (LBM) and scaling laws to quantify (i) the effect of dissolution on the preservation of capillary instabilities, (ii) the penetration depth of reaction beyond the dissolution/melting front, and (iii) the temporal and spatial distribution of dissolution/melting under different conditions (concentration of reactant in the non-wetting fluid, injection rate). Our results show that, even for tortuous non-wetting fluid channels, simple scaling laws assuming an axisymmetrical annular flow can explain (i) the exponential decay of reactant along capillary channels, (ii) the dependence of the penetration depth of reactant on a local Péclet number (using the non-wetting fluid velocity in the channel) and more qualitatively (iii) the importance of the melting/reaction efficiency on the stability of non-wetting fluid channels. Our numerical method allows us to study the feedbacks between the immiscible multiphase fluid flow and a dynamically evolving porous matrix (dissolution or melting) which is an essential component of reactive transport in porous media.


Sign in / Sign up

Export Citation Format

Share Document