scholarly journals Effect of Reinforced Concrete Cracking on Chloride Ion Penetration

2015 ◽  
Vol 22 ◽  
pp. 04026
Author(s):  
Chao Yuan ◽  
Yang Li ◽  
Xu Chen ◽  
Wenjie Wang
2021 ◽  
Vol 11 (21) ◽  
pp. 10137
Author(s):  
Limin Lu ◽  
Shaohua Wu ◽  
Yuwen Qin ◽  
Guanglin Yuan ◽  
Qingli Zhao ◽  
...  

Chloride ion penetration frequently leads to steel corrosion and reduces the durability of reinforced concrete. Although previous studies have investigated the chloride ion permeability of some fiber concrete, the chloride ion permeability of the basalt fiber reinforced concrete (BFRC) has not been widely investigated. Considering that BFRC may be subjected to various exposure environments, this paper focused on exploring the chloride ion permeability of BFRC under the coupling effect of elevated temperatures and compression. Results demonstrated that the chloride ion content in concrete increased linearly with temperature. After exposure to different elevated temperatures, the chloride ion content in BFRC varied greatly with increasing stress. The compressive stress ratio threshold for the chloride ion penetration was measured. A calculation model of BFRC chloride ion diffusion coefficient under the coupling effect of elevated temperatures and mechanical damage (loading test) was proposed.


2015 ◽  
Vol 18 (2) ◽  
pp. 427-440 ◽  
Author(s):  
Rui Vasco Silva ◽  
Jorge de Brito ◽  
Rui Neves ◽  
Ravindra Dhir

2012 ◽  
Vol 591-593 ◽  
pp. 2422-2427
Author(s):  
Juan Zhao

Considering the complexity of the chloride ion penetration in concrete exposed to marine environment, an integrated chloride penetration model coupled with temperature and moisture transfer is proposed. The governing equations and parameters embody fully the cross-impacts among thermal conduction, moisture transfer and chloride ion penetration. Furthermore, the four exposure conditions are classified based on the different contact with the aggressive marine environment, and then the micro-climate condition on the concrete surface is investigated according to the regional climate characteristics, therefore, a comprehensive analog simulation to the chloride penetration process is proposed. To demonstrate that the proposed numerical model can correctly simulate the chloride diffusion in concrete, the integrated chloride diffusion model is applied in reproducing a real experiment, finally the model gives good agreement with the experimental profiles, and it is proved the tidal zone exposure results in a more severe attack on the reinforcement


Sign in / Sign up

Export Citation Format

Share Document