Experiment study on the effect of freeze-thaw damage to chloride ion penetration performance of concrete

2016 ◽  
pp. 745-748
Author(s):  
Xiao-Hang Hao ◽  
Ya-Na Zhang ◽  
Yan Liu ◽  
Ya-Di Hu
2015 ◽  
Vol 115 ◽  
pp. 179-188 ◽  
Author(s):  
Ali Mardani-Aghabaglou ◽  
İrem Kalıpcılar ◽  
Gözde İnan Sezer ◽  
Alper Sezer ◽  
Selim Altun

2021 ◽  
Vol 10 (1) ◽  
pp. 504-517
Author(s):  
Peng Zhang ◽  
Hongsen Zhang ◽  
Guo Cui ◽  
Xiaodong Yue ◽  
Jinjun Guo ◽  
...  

Abstract Impact drop weight tests, rapid chloride migration coefficient tests, single-sided freeze–thaw tests, and mechanical property tests were performed to investigate the effect of the steel fiber (SF) content on the impact resistance and durability of concrete containing nano-SiO2 (NS). A fixed NS content of 3% and six SF contents in a range of 0–2.5% by volume were used. The impact resistance was measured based on the number of blows (N1, N2) and the impact energy. The durability of concrete includes its freeze–thaw resistance and chloride ion penetration resistance, which were appraised by the chloride ion diffusion coefficient (CDC) and relative dynamic elastic modulus (RDM), respectively. The ductility ratio was used to predict the impact resistance of concrete containing NS with different SF contents, and a linear relation between this ratio and the impact energy (R 2 = 0.853) was found. The experimental results indicated that SF could greatly improve the impact resistance of concrete. The addition of 2.0% SF increased N1 and N2 by 106 and 169%, respectively. In addition, an appropriate SF content significantly improved the durability of the concrete, including its frost resistance (especially in the middle and late freezing–thawing cycles) and chloride ion penetration resistance. An SF content of 1.5% was the optimum, decreasing the CDC of nano-concrete by 17.1% and minimizing the RDM loss. Moreover, the 1.5% SF content increased the compressive strength of concrete containing NS by 18.5%, whereas an SF content of 2.0% increased the splitting tensile strength and flexural strength by 77 and 20%, respectively. Furthermore, when the SF content exceeded a certain value, the improvement effect on these properties began to decrease and even became negative.


2015 ◽  
Vol 18 (2) ◽  
pp. 427-440 ◽  
Author(s):  
Rui Vasco Silva ◽  
Jorge de Brito ◽  
Rui Neves ◽  
Ravindra Dhir

2012 ◽  
Vol 591-593 ◽  
pp. 2422-2427
Author(s):  
Juan Zhao

Considering the complexity of the chloride ion penetration in concrete exposed to marine environment, an integrated chloride penetration model coupled with temperature and moisture transfer is proposed. The governing equations and parameters embody fully the cross-impacts among thermal conduction, moisture transfer and chloride ion penetration. Furthermore, the four exposure conditions are classified based on the different contact with the aggressive marine environment, and then the micro-climate condition on the concrete surface is investigated according to the regional climate characteristics, therefore, a comprehensive analog simulation to the chloride penetration process is proposed. To demonstrate that the proposed numerical model can correctly simulate the chloride diffusion in concrete, the integrated chloride diffusion model is applied in reproducing a real experiment, finally the model gives good agreement with the experimental profiles, and it is proved the tidal zone exposure results in a more severe attack on the reinforcement


2021 ◽  
Vol 11 (20) ◽  
pp. 9456
Author(s):  
Changjoon Lee ◽  
Andres Salas Montoya ◽  
Hoon Moon ◽  
Hyunwook Kim ◽  
Chulwoo Chung

The present study investigated the influence of the hybridization of steel and polyolefin fiber on the mechanical performance and chloride ion penetration of base concrete designed for marine shotcreting purposes. The purpose of fiber hybridization is to reduce the risk of corrosion that might occur during service life. Sets of hybrid fiber reinforced base concrete, whose water to binder ratio was 0.338, were prepared. The fiber contents in the base concrete were 0.54 and 1.08 vol%, and the volume proportion of polyolefin fiber in the hybrid fiber varied from 0 to 100%. Although the effect of fiber hybridization was not clearly observed from the compressive strength, a synergetic effect which increased both the flexural strength and toughness occurred at a fiber content of 1.08 vol%. The optimum ratio of steel and polyolefin fiber was 50:50. With respect to chloride ion penetration, an increasing amount of steel fiber increased the amount of current passing through the base concrete specimen due to the presence of electrically conductive steel fiber. However, chloride ion diffusivity was not greatly affected by the presence of steel fiber.


Sign in / Sign up

Export Citation Format

Share Document