An Assessment of the Long-Term Durability of Concrete in Radioactive Waste Repositories

1985 ◽  
Vol 50 ◽  
Author(s):  
A. Atkinson ◽  
D. J. Goult ◽  
J. A. Hearne

AbstractA preliminary assessment of the long-term durability of concrete in a repository sited in clay is presented. The assessment is based on recorded experience of concrete structures and both field and laboratory studies. It is also supported by results of the examination of a concrete sample which had been buried in clay for 43 years.The enoineering lifetime of a 1 m thick reinforced concrete slab, with one face in contact with clay, and the way in which pH in the repository as a whole is likely to vary with time have both been estimated from available data. The estimates indicate that engineering lifetimes of about 103 years are expected (providing that sulphate resisting cement is used) and that pH is likely to remain above 10.5 for about 106 years.

2020 ◽  
Vol 868 ◽  
pp. 65-69
Author(s):  
Marek Ďubek ◽  
Marián Bederka ◽  
Peter Makýš

The process of producing a monolithic concrete structure on site is constructed out under different climatic conditions, which can often be unsuitable for setting and hardening of concrete. The necessary conditions for setting and hardening of concrete are ensured by various ways of its curing. In practice, concrete curing is carried out in most cases by water spraying. It is used mostly in reinforced concrete ceiling slabs, which are further discussed in the work. A common procedure is to cure the upper surface of reinforced concrete ceiling slabs. This work therefore deals with the effect of curing of a reinforced concrete slab, on its strength properties. Long-term curing would yield higher values of compressive strength, but it is also necessary to consider how effective it is. As a pilot research in this work is investigating the properties of concrete cubes in various curing. It further develops theoretical possibilities for continuing research.


2018 ◽  
Vol 66 ◽  
pp. 02006
Author(s):  
Adam Kanciruk

The article discusses five year long measurements of strains of a concrete floor of a hangar. That hangar, originally meant for servicing light military aircraft, was rebuilt with a view to making it fit for servicing larger and heavier passenger planes. As part of that redevelopment, a new floor - reinforced concrete slab, capable of withstanding the weight of the planes - was constructed. In the areas of the floor where the greatest loads occur, ie. in the areas of the concrete slab on which the wheels of the three undercarriage legs rest, three strain rosettes were installed so that the slab strains could be measured. The rosettes were connected to two meters - dataloggers. The latter were programmed in such a way as to register the measured strains and additionally temperatures many times during every 24 hours. The monitoring process, conducted in such an automatic way, demonstrated the occurrence of strains resulting from service load, aging of the reinforced concrete, as well as changes in its temperature.


Sign in / Sign up

Export Citation Format

Share Document