scholarly journals Research of Boundary Layer Transition characteristics Induced by Three-Dimensional Discrete Roughness

2018 ◽  
Vol 151 ◽  
pp. 03002
Author(s):  
Feng Li ◽  
Chao Gao ◽  
Zijie Zhao ◽  
Xudong Ren

Roughness strip is a necessary technology for wind tunnel experiment. In order to improve the accuracy and reliability of transition simulation, a new fixed transition technology based on the three-dimensional discrete roughness elements has been established. The configuration parameters of roughness elements are calculated theoretically and the formula and manufacturing processes of roughness elements are developed. Using two-dimensional airfoil and three-dimensional combination models, the transition and additional resistance characteristics of discrete roughness elements are studied. Finally, the scale effect of roughness elements is analyzed and the influence laws of height, diameter, and spacing on transition characteristics have been obtained through numerical calculation. The results of this study indicate that this new discrete roughness is better in transition and additional resistance performance than conventional grit roughness. The results obtained in this paper has created a more reliable and accurate fixed transition technology for wind tunnel experiment and provided some reference for cross-flow transition mechanism.

2018 ◽  
Vol 32 (29) ◽  
pp. 1850349 ◽  
Author(s):  
Hao Dong ◽  
Shicheng Liu ◽  
Xi Geng ◽  
Kun Zhang ◽  
Keming Cheng

The influence of distributed cylinder roughness elements on boundary layer transition for NACA0012 airfoil at Ma = 0.6 has been investigated by subsonic/transonic/supersonic wind tunnel experiment with oil-film interferometry. Three different heights and two different distances of cylinder roughness elements on the airfoil model were used, and the skin friction coefficient was measured by the oil-film interferometry. The experimental results show that higher roughness elements promote the transition earlier. In addition, narrower distance of roughness elements can delay the transition compared with the case of wider distance.


2001 ◽  
Vol 439 ◽  
pp. 305-333 ◽  
Author(s):  
ZHIYIN YANG ◽  
PETER R. VOKE

Transition arising from a separated region of flow is quite common and plays an important role in engineering. It is difficult to predict using conventional models and the transition mechanism is still not fully understood. We report the results of a numerical simulation to study the physics of separated boundary-layer transition induced by a change of curvature of the surface. The geometry is a flat plate with a semicircular leading edge. The Reynolds number based on the uniform inlet velocity and the leading-edge diameter is 3450. The simulated mean and turbulence quantities compare well with the available experimental data.The numerical data have been comprehensively analysed to elucidate the entire transition process leading to breakdown to turbulence. It is evident from the simulation that the primary two-dimensional instability originates from the free shear in the bubble as the free shear layer is inviscidly unstable via the Kelvin–Helmholtz mechanism. These initial two-dimensional instability waves grow downstream with a amplification rate usually larger than that of Tollmien–Schlichting waves. Three-dimensional motions start to develop slowly under any small spanwise disturbance via a secondary instability mechanism associated with distortion of two-dimensional spanwise vortices and the formation of a spanwise peak–valley wave structure. Further downstream the distorted spanwise two-dimensional vortices roll up, leading to streamwise vorticity formation. Significant growth of three-dimensional motions occurs at about half the mean bubble length with hairpin vortices appearing at this stage, leading eventually to full breakdown to turbulence around the mean reattachment point. Vortex shedding from the separated shear layer is also observed and the ‘instantaneous reattachment’ position moves over a distance up to 50% of the mean reattachment length. Following reattachment, a turbulent boundary layer is established very quickly, but it is different from an equilibrium boundary layer.


Author(s):  
Saikishan Suryanarayanan ◽  
David B. Goldstein ◽  
Garry L. Brown ◽  
Alexandre R. Berger ◽  
Edward B. White

Author(s):  
Florian Herbst ◽  
Andreas Fiala ◽  
Joerg R. Seume

The current design of low-pressure turbines (LPTs) with steady-blowing vortex generating jets (VGJ) uses steady computational fluid dynamics (CFD). The present work aims to support this design approach by proposing a new semi-empirical transition model for injection-induced laminar-turbulent boundary layer transition. It is based on the detection of cross-flow vortices in the boundary layer which cause inflectional cross-flow velocity profiles. The model is implemented in the CFD code TRACE within the framework of the γ-Reθ transition model and is a reformulated, re-calibrated, and extended version of a previously presented model. It is extensively validated by means of VGJ as well as non-VGJ test cases capturing the local transition process in a physically reasonable way. Quantitative aerodynamic design parameters of several VGJ configurations including steady and periodic-unsteady inflow conditions are predicted in good accordance with experimental values. Furthermore, the quantitative prediction of end-wall flows of LPTs is improved by detecting typical secondary flow structures. For the first time, the newly derived model allows the quantitative design and optimization of LPTs with VGJs.


1995 ◽  
Vol 117 (1) ◽  
pp. 142-153 ◽  
Author(s):  
J. Moore ◽  
J. G. Moore

Osborne Reynolds’ developments of the concepts of Reynolds averaging, turbulence stresses, and equations for mean kinetic energy and turbulence energy are viewed in the light of 100 years of subsequent flow research. Attempts to use the Reynolds energy-balance method to calculate the lower critical Reynolds number for pipe and channel flows are reviewed. The modern use of turbulence-energy methods for boundary layer transition modeling is discussed, and a current European Working Group effort to evaluate and develop such methods is described. The possibility of applying these methods to calculate transition in pipe, channel, and sink flows is demonstrated using a one-equation, q-L, turbulence model. Recent work using the equation for the kinetic energy of mean motion to gain understanding of loss production mechanisms in three-dimensional turbulent flows is also discussed.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


Sign in / Sign up

Export Citation Format

Share Document