scholarly journals Low-cycle fatigue behavior of extruded Al-7Zn-2Mg-1.5Cu-0.2Sc-0.1Zr alloy at room and low temperatures

2018 ◽  
Vol 165 ◽  
pp. 22001
Author(s):  
Zhu Qingyan ◽  
Chen Lijia ◽  
Xu Chengji ◽  
Che Xin ◽  
Li Feng

Due to the low density and high specific strength, aluminum alloys have been considered for automotive and aerospace applications. The aluminum components usually service in the conditions of low temperature and dynamic loading. Therefore, the research on the low temperature fatigue performances of Al alloys has great significance. The lowcycle fatigue tests for the extruded Al-7Zn-2Mg-1.5Cu-0.2Sc-0.1Zr alloy subjected to solution plus aging treatment have been conducted at 25°C and -40°C, respectively. The strain ratio and cyclic frequency applied in the low-cycle fatigue test were -1 and 0.5Hz, respectively. The experimental results show that at 25°C, the alloy exhibits the cyclic hardening at the total strain amplitudes of 1.0% and 1.2%, and the cyclic stabilization at the total strain amplitudes of 0.4%, 0.6% and 0.8%. At -40°C, however, the cyclic stability is observed during whole fatigue deformation at the total strain amplitudes of 0.4%, 0.5%, 0.6%, 0.7% and 0.8%. The relationship between the elastic strain amplitude, plastic strain amplitude and reversals to failure can be described by Basquin and Coffin-Manson equations, respectively. In addition, the observation results of fatigue fracture surfaces reveal that the cracks initiate at the free surface of fatigue specimen and propagate in a transgranular mode.

2011 ◽  
Vol 399-401 ◽  
pp. 1937-1941 ◽  
Author(s):  
Wen Yong Xu ◽  
Guo Qing Zhang ◽  
Zhou Li

Low cycle fatigue behavior of spray formed superalloy GH738 at 650°C has been investigated under fully reversed total strain-controlled mode. When strain amplitude (Δεt/2) is between 0.32% and 0.4%, cyclic stress response is stable under fully reversed constant total strain amplitude. The stabilized hysteresis loops narrowing sharply to a straight line indicates that the alloy exhibits typical elastic strain. The crack initiates single site from the surface. When strain amplitude is between 0.6% and 1.0%, cyclic hardening is observed until fracture. The tendency for hardening is found to increase with strain amplitude. The hyperesis loops expand gradually, which indicates that plastic deformation happens during cyclic deformation process. The crack initiates multi-sites from the surface. The cyclic strain-stress relationship of spray formed GH738 at 650°C can be illustrated by Δσ/2 =2017(Δεp/2)0.1489.The total strain-life function can expressed by Δεt/2=0.0071(2Nf)-0.0781+0.0647(2Nf) )-0.4914.


2013 ◽  
Vol 395-396 ◽  
pp. 234-237
Author(s):  
Guo Sheng Duan ◽  
Bao Lin Wu ◽  
Xiang Zhao ◽  
Gang Zhao

The strain-controlled fatigue tests on extruded AZ31B magnesium alloy were conducted under the uniaxial loading with strain ratio Rε=-∞, frequency of 0.1 Hz and strain amplitude of 2% at room temperature. The cyclic hardening behavior was investigated. It was found that, during the low cycle fatigue (LCF) process, as the number of cycles increases, the stress amplitude increases corresponding to the decrease of the plastic strain amplitude. The development of dislocation density can be described as the function of the number of fatigue cycles, and the behavior can be explained well based on the dislocation density development model.


2011 ◽  
Vol 287-290 ◽  
pp. 883-887
Author(s):  
Shu Ying Yin ◽  
Li Jia Chen ◽  
Xin Wang

In order to identify the influence of solid solution, aging and solid solution plus aging treatments on the low-cycle fatigue behavior of the extruded AZ61 magnesium alloy, the low-cycle fatigue tests were performed at room temperature for the extruded AZ61 magnesium alloy with different treating states. The results indicate that the cyclic stress response behavior of the extruded AZ61 magnesium alloy exhibits both cyclic strain hardening and stability. The solid solution, aging and solid solution plus aging treatments tend to decrease the cyclic deformation resistance of the extruded AZ61 alloy in most conditions. The solid solution treatment can enhance the fatigue lives of the extruded AZ61 alloy at medium total strain amplitudes. In addition, the aging treatment can prolong the low-cycle fatigue lives of the AZ61 alloy at most total strain amplitudes, while the case for the solid solution plus aging treatment is just contrary. For the extruded AZ61 alloy with different treating states, a linear relationship between cyclic stress amplitude and plastic strain amplitude is noted.


2010 ◽  
Vol 118-120 ◽  
pp. 611-615
Author(s):  
Teng Yu ◽  
Lei Wang ◽  
Yong Qing Zhao ◽  
Yang Liu

Effects of thermal exposure on low cycle fatigue behavior of Ti600 alloy were investigated by LSCM, SEM and TEM. The results demonstrated that both the NTE specimens and the TE specimens showed the cyclic softening, within a total strain amplitude range from ±0.45% to ±1.00%. Since the α2 phase precipitated in the αp phase during thermal exposure, the resistance of fatigue crack propagation of αp phase could be increased by the precipitation of α2 phase. Therefore, the low cycle fatigue (LCF) lives of Ti600 alloy after thermal exposure were longer than those without thermal exposure, at the same total strain amplitude.


2015 ◽  
Vol 2015.90 (0) ◽  
pp. 280
Author(s):  
Ryuji TOMITA ◽  
Yoshihisa KANEKO ◽  
Makoto UCHIDA ◽  
Muhammad RIFAI ◽  
Hiroyuki MIYAMOTO ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 892
Author(s):  
Beining Du ◽  
Liyuan Sheng ◽  
Chuanyong Cui ◽  
Ziyang Hu ◽  
Xiaofeng Sun

The Ni-based IN792 superalloy is widely applied as a component in industrial turbines and aircraft engines due to its good high-temperature properties and excellent corrosion resistance. Since these components have to suffer from cyclic thermal and mechanical stresses during service, the high-temperature fatigue failure becomes one of the major factors affecting their service lives. Grain refinement has been considered as an effective way to improve the mechanical performance of superalloys. However, due to the complexity of alloy composition, microstructure and service condition, there is no unified theory about the influence of grain refinement on the fatigue performance and fracture mechanism of superalloys. In the present research, the IN792 superalloy with different grain sizes was manufactured. Then, fully reversed, strain-controlled, low-cycle fatigue (LCF) tests with four different total strain amplitudes were carried out on the alloy at 700 °C and 800 °C to clarify the effects of grain refinement on its LCF behavior. The results show that grain refinement improved the fatigue life significantly, which is mainly attributed to increasing the grain boundary content and refining MC carbides, eutectic structures and dendritic structures. During fatigue test under lower strain amplitude, the alloy exhibits a pronounced initial fatigue hardening followed by a continuous well-defined stability stage, which is caused by the formation of dislocation networks and coarsening of primary γ’ phases. However, during fatigue test under higher strain amplitude, the alloy exhibits continuous hardening response because the dislocations could shear primary γ’ phases, which could give rise to resistance to dislocation movement. In addition, the fracture surface observation shows that the fatigue fracture mode is mainly affected by the total strain amplitude. Under lower total strain amplitude, the fatigue microcracks mainly initiate at the porosities near the specimen surface, while under higher total strain amplitude, the fatigue microcracks tend to form at the interior of the specimen.


Author(s):  
Jean Alain Le Duff ◽  
Andre´ Lefranc¸ois ◽  
Jean Philippe Vernot

In February/March 2007, The NRC issued Regulatory Guide “RG1.207” and Argonne National Laboratory issued NUREG/CR-6909 that is now applicable in the US for evaluations of PWR environmental effects in fatigue analyses of new reactor components. In order to assess the conservativeness of the application of this NUREG report, Low Cycle Fatigue (LCF) tests were performed by AREVA NP on austenitic stainless steel specimens in a PWR environment. The selected material exhibits in air environment a fatigue behavior consistent with the ANL reference “air” mean curve, as published in NUREG/CR-6909. LCF tests in a PWR environment were performed at various strain amplitude levels (± 0.6% or ± 0.3%) for two loading conditions corresponding to a simple or to a complex strain rate history. The simple loading condition is a fully reverse triangle signal (for comparison purposes with tests performed by other laboratories with the same loading conditions) and the complex signal simulates the strain variation for an actual typical PWR thermal transient. In addition, two various surface finish conditions were tested: polished and ground. This paper presents the comparisons of penalty factors, as observed experimentally, with penalty factors evaluated using ANL formulations (considering the strain integral method for complex loading), and on the other, the comparison of the actual fatigue life of the specimen with the fatigue life predicted through the NUREG report application. For the two strain amplitudes of ± 0.6% and ± 0.3%, LCF tests results obtained on austenitic stainless steel specimens in PWR environment with triangle waveforms at constant low strain rates give “Fen” penalty factors close to those estimated using the ANL formulation (NUREG/6909). However, for the lower strain amplitude level and a triangle loading signal, the ANL formulation is pessimistic compared to the AREVA NP test results obtained for polished specimens. Finally, it was observed that constant amplitude LCF test results obtained on ground specimens under complex loading simulating an actual sequence of a cold and hot thermal shock exhibits lower combined environmental and surface finish effects when compared to the penalty factors estimated on the basis of the ANL formulations. It appears that the application of the NUREG/CR-6909 in conjunction with the Fen model proposed by ANL for austenitic stainless steel provides excessive margins, whereas the current ASME approach seems sufficient to cover significant environmental effects for representative loadings and surface finish conditions of reactor components.


2012 ◽  
Vol 06 ◽  
pp. 251-256
Author(s):  
HO-YOUNG YANG ◽  
JAE-HOON KIM ◽  
KEUN-BONG YOO

Co -base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.


Author(s):  
Jorge E. Egger ◽  
Fabian R. Rojas ◽  
Leonardo M. Massone

AbstractLow cycle fatigue life of high-strength reinforcing steel bars (ASTM A706 Grade 80), using photogrammetry by RGB methodology is evaluated. Fatigue tests are performed on specimens under constant axial displacement with total strain amplitudes ranging from 0.01 to 0.05. The experimental observations indicate that buckling of high-strength reinforcing bars results in a damaging degradation of their fatigue life performance as the slenderness ratio increases, including an early rebar failure as the total strain amplitude increases since it achieves the plastic range faster. In addition to this, the results show that the ratio of the ultimate tensile strength to yield strength satisfies the minimum of 1.25 specified in ASTM A706 for reinforcement. On the other hand, the RGB methodology indicates that the axial strains measured by photogrammetry provide more accurate data since the registered results by the traditional experimental setup do not detect second-order effects, such as slippage or lengthening of the specimens within the clamps. Moreover, the RGB filter is faster than digital image correlation (DIC) because the RGB methodology requires a fewer computational cost than DIC algorithms. The RGB methodology allows to reduce the total strain amplitude up to 45% compared to the results obtained by the traditional setup. Finally, models relating total strain amplitude with half-cycles to failure and total strain amplitude with total energy dissipated for multiple slenderness ratios (L/d of 5, 10, and 15) are obtained.


2021 ◽  
Author(s):  
Himesh Patel

To improve fuel economy and reduce greenhouse gas emissions, magnesium alloys are being considered for automotive and aerospace applications because of their high strength-to-weight ratio. The objective of this thesis was to study monotonic and cyclic deformation behavior of two semi-solid processed (thixomolded) magnesium alloys, AZ91D and AM60B. The fatigue life of these thixomolded alloys was observed to be higher than that of their die cast counterparts. As the total strain amplitude increased, the stress amplitude and plastic strain amplitude increased, while the pseudoelastic modulus decreased. The change in the modulus was attributed to the nonlinear (pseudoelastic) behavior caused by twinning-detwinning during cyclic deformation. The fatigue life increased with decreasing strain ratio, and partial mean stress relaxation occurred mainly in the initial 10-20% of the fatigue life. The fatigue life of theAM60B alloy improved after solution or solution-aging treatment, and the monotonic strength increased by aging, while the thixomolded condition itself exhibited moderate monotonic strength and fatigue life.


Sign in / Sign up

Export Citation Format

Share Document