scholarly journals Optimization of building design process by using energy simulation tools

2018 ◽  
Vol 174 ◽  
pp. 01033
Author(s):  
Piotr Ziembicki

Requirements concerning energy efficiency of buildings, as well as the emission of energy sources working for their needs, are constantly growing. It is related to the Polish law, as well as European Union directives. It is obvious that in the coming years, further regulations and directives will impose additional requirements in this area. Therefore, the requirements for the operation of buildings and process of their designing are changing already today. In the past, the design process, in particular in the aspect of energy consumption, was based primarily on the procedures of static analysis of the building's structure (partitions, glazing, etc.). A typical calculation of a building heat demand did not take into account other aspects of the building's operation, such as user behaviour, heat gains or thermal accumulation of the building. Therefore, in modern designing, it is extremely important to use advanced computer techniques to develop a detailed balance of energy, which takes into account all its useful forms, including heat and electricity. Only such a comprehensive approach will render it possible to achieve the energy efficiency indicators required by law, as well as an economically efficient operation of the building, with a minimal bad influence on the environment. In general, the manuscript presents methods of comprehensive computer energy simulation of buildings, which can be used for optimal designing of buildings for any purpose. The article also presents an overview of available computer tools, which are recommended for the building design process. There are also some examples of using a simulation software for the analysis of residential buildings, along with the analysis of the results of energy simulations carried out with its help.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shahryar Habibi

Purpose The purpose of this study is to design a zero-energy home, which is known to be capable of balancing its own energy production and consumption close to zero. Development of low-energy homes and zero-net energy houses (ZEHs) is vital to move toward energy efficiency and sustainability in the built environment. To achieve zero or low energy targets in homes, it is essential to use the design process that minimizes the need for active mechanical systems. Design/methodology/approach The methodology discussed in this paper consists of an interfacing building information modeling (BIM) tool and a simulation software to determine the potential influence of phase change materials on designing zero-net energy homes. Findings BIM plays a key role in advancing methods for architects and designers to communicate through a common software platform, analyze energy performance through all stages of the design and construction process and make decisions for improving energy efficiency in the built environment. Originality/value This paper reviews the literature relevant to the role of BIM in helping energy simulation for the performance of residential homes to more advanced levels and in modeling the integrated design process of ZEHs.


Author(s):  
C. León-Sánchez ◽  
D. Giannelli ◽  
G. Agugiaro ◽  
J. Stoter

Abstract. The 3D BAG v. 2.0 dataset has been recently released: it is a country-wide dataset containing all buildings in the Netherlands, modelled in multiple LoDs (LoD1.2, LoD1.3 and LoD2.2). In particular, the LoD2.2 allows differentiating between different thematic surfaces composing the building envelope. This paper describes the first steps to test and use the 3D BAG 2.0 to perform energy simulations and characterise the energy performance of the building stock. Two well-known energy simulation software packages have been tested: SimStadt and CitySim Pro. Particular care has been paid to generate a suitable, valid CityGML test dataset, located in the municipality of Rijssen-Holten in the central-eastern part of the Netherlands, that has been then used to test the energy simulation tools. Results from the simulation tools have been then stored into the 3D City Database, additionally extended to deal with the CityGML Energy ADE. The whole workflow has been checked in order to guarantee a lossless dataflow.The paper reports on the proposed workflow, the issues encountered, some solutions implemented, and what the next steps will be.


Author(s):  
Atanes Papoyan ◽  
Changhong Zhan ◽  
Xueying Han ◽  
Guanghao Li

Abstract In this article the research is concentrated on defining the possibility and potentials of design to enhance the energy efficiency and refine the climate conditions in the existing residential buildings in Armenia. The digital model of existing residential building is used to calculate the annual energy consumption, by simulation software—Autodesk Green Building Student. The horizontal solar panel systems offered by local market leaders were applied to calculate the annual savings, the required installation area, prices, etc. Consequently, the actual efficiency of energy saving technological process of residential buildings in Armenia is estimated. Based on the applied strategies and obtained fact, some recommendations are made for residential buildings. This article is intended to help and to be stimulus for architects and constructors to consider and include green technologies in their new projects.


2015 ◽  
Vol 10 (3) ◽  
pp. 161-176 ◽  
Author(s):  
Ajla Aksamija

Developments in information technology are providing methods to improve current design practices, where uncertainties about various design elements can be simulated and studied from the design inception. Energy and thermal simulations, improved design representations and enhanced collaboration using digital media are increasingly being used. With the expanding interest in energy-efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design strategies save energy and improve building performance. The purpose of this research was to investigate the potential of these programs to perform whole building energy analysis during the early stages of architectural design, and compare the results with the actual building energy performance. The research was conducted by simulating energy usage of a fully functional research laboratory building using two different simulation tools that are aimed for early schematic design. The results were compared with utility data of the building to identify the degree of closeness with which simulation results match the actual energy usage of the building. Results indicate that modeled energy data from one of the software programs was significantly higher than the measured, actual energy usage data, while the results from the second application were comparable, but did not correctly predict monthly energy loads for the building. This suggests that significant deviations may exist between modeled and actual energy consumption for buildings, and more importantly between different simulation software programs. Understanding the limitations and suitability of specific simulation programs is crucial for successful integration of performance simulations with the design process.


2021 ◽  
Author(s):  
Messaouda Rais ◽  
Adel Boumerzoug ◽  
Balint Baranyai

AbstractAs it is clear, worldwide buildings are the largest consumer of the final energy consumption. In Algeria, it has been reported that 33% of the overall energy consumption was attributed to buildings. This is due to the design and constructional techniques of the residential buildings, which do not address the local climatic condition. To assess this situation, the study is focused on analyzing the existing residential buildings in Algeria, in terms of energy, thermal, daylight, and indoor air quality performance, using a dynamic simulation software. Typical building design in a hot and dry climate was selected. The results revealed that the existing residential buildings do not comply with the energy-efficient design standards. It was concluded that further strategies should be applied in this sector, in terms of building design, materials, and façade configuration.


2019 ◽  
Vol 11 (11) ◽  
pp. 3078 ◽  
Author(s):  
Giacomo Chiesa ◽  
Andrea Acquaviva ◽  
Mario Grosso ◽  
Lorenzo Bottaccioli ◽  
Maurizio Floridia ◽  
...  

Counterbalancing climate change is one of the biggest challenges for engineers around the world. One of the areas in which optimization techniques can be used to reduce energy needs, and with that the pollution derived from its production, is building design. With this study of a generic office located both in a northern country and in a temperate/Mediterranean site, we want to introduce a coding approach to dynamic energy simulation, able to suggest, from the early-design phases when the main building forms are defined, optimal configurations considering the energy needs for heating, cooling and lighting. Generally, early-design considerations of energy need reduction focus on the winter season only, in line with the current regulations; nevertheless a more holistic approach is needed to include other high consumption voices, e.g., for space cooling and lighting. The main considered design parameter is the WWR (window-to-wall ratio), even if further variables are considered in a set of parallel analyses (level of insulation, orientation, activation of low-cooling strategies including shading devices and ventilative cooling). Finally, the effect of different levels of occupancy was included in the analysis to regress results and compare the WWR with corresponding heating and cooling needs. This approach is adapted to Passivhaus design optimization, working on energy need minimisation acting on envelope design choices. The results demonstrate that it is essential to include, from the early-design configurations, a larger set of variables in order to optimize the expected energy needs on the basis of different aspects (cooling, heating, lighting, design choices). Coding is performed using Python scripting, while dynamic energy simulations are based on EnergyPlus.


2020 ◽  
Vol 165 ◽  
pp. 04052
Author(s):  
Hui Zhang

In the late 1990s, China has entered an aging society. In recent years, with the rapid development of economy and society, the speed of population of the aging is accelerating. The elderly are the wealth of the country. We should start with details to ensure the normal life and needs of the elderly. To study the problems related to the residential building design for the elderly, we must first make clear the related problems of the elderly, and then improve from the actual design process, and finally improve the quality of life and living of the elderly. This thesis focuses on the design of residential buildings for the elderly in the context of an aging society. Proceeding from the actual problems of the elderly, discussing the physical and psychological problems, the author analyses the problems in the design process and the principles to be followed, and finally proposes measures to improve the design level. It is hoped that the waste paper will further promote the development of residential building design for the elderly in the aging society.


2021 ◽  
Vol 13 (12) ◽  
pp. 6791
Author(s):  
Luka Pajek ◽  
Mitja Košir

Climate change is expected to expose the locked-in overheating risk concerning bioclimatic buildings adapted to a specific past climate state. The study aims to find energy-efficient building designs which are most resilient to overheating and increased cooling energy demands that will result from ongoing climate change. Therefore, a comprehensive parametric study of various passive building design measures was implemented, simulating the energy use of each combination for a temperate climate of Ljubljana, Slovenia. The approach to overheating vulnerability assessment was devised and applied using the increase in cooling energy demand as a performance indicator. The results showed that a B1 heating energy efficiency class according to the Slovenian Energy Performance Certificate classification was the highest attainable using the selected passive design parameters, while the energy demand for heating is projected to decrease over time. In contrast, the energy use for cooling is in general projected to increase. Furthermore, it was found that, in building models with higher heating energy use, low overheating vulnerability is easier to achieve. However, in models with high heating energy efficiency, very high overheating vulnerability is not expected. Accordingly, buildings should be designed for current heating energy efficiency and low vulnerability to future overheating. The paper shows a novel approach to bioclimatic building design with global warming adaptation integrated into the design process. It delivers recommendations for the energy-efficient, robust bioclimatic design of residential buildings in the Central European context, which are intended to guide designers and policymakers towards a resilient and sustainable built environment.


Sign in / Sign up

Export Citation Format

Share Document