scholarly journals TESTING THE NEW 3D BAG DATASET FOR ENERGY DEMAND ESTIMATION OF RESIDENTIAL BUILDINGS

Author(s):  
C. León-Sánchez ◽  
D. Giannelli ◽  
G. Agugiaro ◽  
J. Stoter

Abstract. The 3D BAG v. 2.0 dataset has been recently released: it is a country-wide dataset containing all buildings in the Netherlands, modelled in multiple LoDs (LoD1.2, LoD1.3 and LoD2.2). In particular, the LoD2.2 allows differentiating between different thematic surfaces composing the building envelope. This paper describes the first steps to test and use the 3D BAG 2.0 to perform energy simulations and characterise the energy performance of the building stock. Two well-known energy simulation software packages have been tested: SimStadt and CitySim Pro. Particular care has been paid to generate a suitable, valid CityGML test dataset, located in the municipality of Rijssen-Holten in the central-eastern part of the Netherlands, that has been then used to test the energy simulation tools. Results from the simulation tools have been then stored into the 3D City Database, additionally extended to deal with the CityGML Energy ADE. The whole workflow has been checked in order to guarantee a lossless dataflow.The paper reports on the proposed workflow, the issues encountered, some solutions implemented, and what the next steps will be.

2019 ◽  
Vol 111 ◽  
pp. 03035 ◽  
Author(s):  
Raimo Simson ◽  
Endrik Arumägi ◽  
Kalle Kuusk ◽  
Jarek Kurnitski

In the member states of the European Union (EU), nearly-Zero Energy Buildings (nZEB) are becoming mandatory building practice in 2021. It is stated, that nZEB should be cost-optimal and the energy performance levels should be re-defined after every five years. We conducted cost-optimality analyses for two detached houses, one terraced house and one apartment building in Estonia. The analysis consisted on actual construction cost data collection based on bids of variable solutions for building envelope, air tightness, windows, heat supply systems and local renewable energy production options. For energy performance analysis we used dynamic simulation software IDA-ICE. To assess cost-effectiveness, we used Net Present Value (NPV) calculations with the assessment period of 30 years. The results for cost-optimal energy performance level for detached house with heated space of ~100 m2 was 79 kWh/(m2 a), for the larger house (~200 m2) 87 kWh/(m2 a), for terraced house with heated space of ~600 m2 71 kWh/(m2 a) and for the apartment building 103 kWh/(m2 a) of primary energy including all energy use with domestic appliances. Thus, the decrease in cost-optimal level in a five-year period was ~60% for the detached house and ~40% for the apartment building, corresponding to a shift in two EPC classes.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Toufic Zaraket ◽  
Bernard Yannou ◽  
Yann Leroy ◽  
Stéphanie Minel ◽  
Emilie Chapotot

Occupants' behavior exerts a significant influence on the energy performance of residential buildings. Industrial energy simulation tools often account for occupants' as monolithic elements with standard averaged energy consumption profiles. Predictions yielded by these tools can thus deviate dramatically from reality. This paper proposes an activity-based model for forecasting energy and water consumption of households and discusses how such an occupant-focused model may integrate a user-focused design of residential buildings. A literature review is first presented followed by a brief recall of the proposed modeling methodology and a sample of simulation results. The possible integration of the proposed model into the design and energy management processes of residential buildings is then demonstrated through a number of use cases.


2018 ◽  
Vol 174 ◽  
pp. 01033
Author(s):  
Piotr Ziembicki

Requirements concerning energy efficiency of buildings, as well as the emission of energy sources working for their needs, are constantly growing. It is related to the Polish law, as well as European Union directives. It is obvious that in the coming years, further regulations and directives will impose additional requirements in this area. Therefore, the requirements for the operation of buildings and process of their designing are changing already today. In the past, the design process, in particular in the aspect of energy consumption, was based primarily on the procedures of static analysis of the building's structure (partitions, glazing, etc.). A typical calculation of a building heat demand did not take into account other aspects of the building's operation, such as user behaviour, heat gains or thermal accumulation of the building. Therefore, in modern designing, it is extremely important to use advanced computer techniques to develop a detailed balance of energy, which takes into account all its useful forms, including heat and electricity. Only such a comprehensive approach will render it possible to achieve the energy efficiency indicators required by law, as well as an economically efficient operation of the building, with a minimal bad influence on the environment. In general, the manuscript presents methods of comprehensive computer energy simulation of buildings, which can be used for optimal designing of buildings for any purpose. The article also presents an overview of available computer tools, which are recommended for the building design process. There are also some examples of using a simulation software for the analysis of residential buildings, along with the analysis of the results of energy simulations carried out with its help.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7420
Author(s):  
Sangtae No

Countries around the world develop and use software based on the monthly calculation method of DIN V 18599:2007 and EN ISO13790 for building energy performance evaluations. The purpose of this study is to propose a method that can consider the effect of reducing cooling energy demand by hybrid ventilation outdoor air cooling in monthly calculation method-based software. For ventilation simulation, some representative floor plans and area types of Korean residential buildings were established through literature research. A number of dynamic energy simulations were performed for various building orientations, heights, and opening factors. Based on the simulation results, a nomograph that can calculate the cooling energy demand reduction factor according to hybrid ventilation that can be applied to the ventilation heat transfer coefficient is proposed.


2020 ◽  
Vol 12 (9) ◽  
pp. 3566
Author(s):  
Byung Chang Kwag ◽  
Sanghee Han ◽  
Gil Tae Kim ◽  
Beobjeon Kim ◽  
Jong Yeob Kim

The purposes of this study were to overview the building-energy policy and regulations in South Korea to achieve energy-efficient multifamily residential buildings and analyze the effects of strengthening the building design requirements on their energy performances. The building energy demand intensity showed a linear relationship with the area-weighted average U-values of the building envelope. However, improving the thermal properties of the building envelope was limited to reducing the building-energy demand intensity. In this study, the effects of various energy conservation measures (ECMs) on the building-energy performance were compared. Among the various ECMs, improving the boiler efficiency was found to be the most efficient measure for reducing the building-energy consumption in comparison to other ECMs, whereas the building envelope showed the least impact, because the current U-values are low. However, in terms of the primary energy consumption, the most efficient ECM was the lighting power density because of the different energy sources used by various ECMs and the different conversion factors used to calculate the primary energy consumption based on the source type. This study showed a direction for updating the building-energy policy and regulations, as well as the potential of implementing ECMs, to improve the energy performances of Korean multifamily residential buildings.


2021 ◽  
Vol 312 ◽  
pp. 02006
Author(s):  
Domenico Palladino ◽  
Domenico Iatauro ◽  
Paolo Signoretti

The Energy Performance of Buildings Directive (EPBD 2018/844/EU) requires to Member States to upgrade the methodology for the energy performance assessment of buildings. The current calculation method, based on the monthly quasi steady state calculation procedure, could be replaced in the next years by an hourly dynamic calculation procedure (EN ISO 52016), in which a resistance-capacity (RC) model is implemented to consider with more accuracy the heat exchange through the building envelope. In this framework, the present work aims at analysing and comparing the energy needs of three reference case studies of nearly Zero Energy Buildings (nZEB), applying both calculation procedures in order to investigate the main difference of the two approaches. Two residential buildings and one office, compliant with Italian minimum requirements for nZEB, were defined, and several energy simulations were carried out for all different climatic zones of Italian territory. Preliminary results highlighted significant differences of energy need mainly due to different weight of heat loss and heat gains obtained with the two considered calculation methods. This paper represents a preliminary study, but further analysis are recommended in order to evaluate the overall energy use for different type and different operation profile of buildings.


2020 ◽  
Vol 12 (17) ◽  
pp. 7153
Author(s):  
David Bienvenido-Huertas

State regulations play an important role to guarantee an appropriate building energy performance. As for the Spanish regulation, the limitation of energy consumption should be analyzed with simulation tools by using operational profiles. The profile of operational conditions of HVAC systems in residential buildings limits the use of heating and cooling systems. This paper studied the limitations of the residential profile in energy assessment processes through simulation tools. A case study was analyzed with three operational approaches and was placed in 8131 Spanish cities. The results showed that the use limitations of cooling systems lead to ignorance of an important percentage contribution in the cooling energy demand in some months of the year. The use of an operational profile with an extended calendar for cooling systems for the entire year would imply a more appropriate knowledge of the building energy performance in order to know the fulfilment of the state regulation and its correct energy classification.


2019 ◽  
Vol 111 ◽  
pp. 03030
Author(s):  
Hilde Breesch ◽  
Barbara Wauman ◽  
Marcus Peeters

Unlike other types of buildings, commercial and industrial buildings have been so far “forgotten”. In addition, EPBD requirements are increasingly challenging for this type of buildings. This paper aims to identify the most building determinants of the energy performance of commercial and industrial buildings, focussing on the building envelope. Building energy simulations (BES) in TRNSYS are used to simulate the energy demand for heating and cooling in five building variants. The Pareto optimality approach that considers the economic and energetic objectives equally, is used to determine the cost-optimal solutions. The sensitivity analysis and cost-optimal study clearly reveal that airtightness seems to be the most important factor. Although heat recovery on a balanced mechanical ventilation system has a major impact on the energy demand for heating, this measure is not cost-optimal. The large impact of the U-value of the roof on the energy demand for heating is also reflected in the cost-optimal study. The insulation of the floor do not appear to be cost-optimal. Moreover, attention to construction detailing is important. The additional energy losses that can occur due to thermal bridges quickly reach significant values although solving the thermal bridges seems not to be cost-optimal.


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 257
Author(s):  
Clara Camarasa ◽  
Lokesh Kumar Kalahasthi ◽  
Ivan Sanchez-Díaz ◽  
Leonardo Rosado ◽  
Lena Hennes ◽  
...  

Cross-country evidence on the adoption of energy-efficient retrofit measures (EERMs) in residential buildings is critical to supporting the development of national and pan-European policies aimed at fostering the energy performance upgrade of the building stock. In this light, the aim of this paper is to advance in the understanding of the probability of certain EERMs taking place in eight EU countries, according to a set of parameters, such as building typology, project types, and motivation behind the project. Using these parameters collected via a multi-country online survey, a set of discrete-choice (conditional logit) models are estimated on the probability of selecting a choice of any combination of 33 EERMs across the sampled countries. Results show that actions related to the building envelope are the most often-addressed across countries and single building elements or technology measures have a higher probability of being implemented. The modelling framework developed in this study contributes to the scientific community in three ways: (1) establishing an empirical relationship among EERMs and project (i.e., retrofit and deep retrofit), (2) identifying commonalities and differences across the selected countries, and (3) quantifying the probabilities and market shares of various EERMs.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 215 ◽  
Author(s):  
Dodoo ◽  
Ayarkwa

This study presents an analysis of the impacts of climate change on thermal comfort and energy performance of residential buildings in Ghana, in sub-Saharan Africa, and explores mitigation as well as adaptation strategies to improve buildings’ performance under climate change conditions. The performances of the buildings are analyzed for both recent and projected future climates for the Greater Accra and Ashanti regions of Ghana, using the IDA-ICE dynamic simulation software, with climate data from the Meteonorm global climate database. The results suggest that climate change will significantly influence energy performance and indoor comfort conditions of buildings in Ghana. However, effective building design strategies could significantly improve buildings’ energy and indoor climate performances under both current and future climate conditions. The simulations show that the cooling energy demand of the analyzed building in the Greater Accra region is 113.9 kWh/m2 for the recent climate, and this increases by 31% and 50% for the projected climates for 2030 and 2050, respectively. For the analyzed building in the Ashanti region, the cooling energy demand is 104.4 kWh/m2 for the recent climate, and this increases by 6% and 15% for the 2030 and 2050 climates, respectively. Furthermore, indoor climate and comfort deteriorate under the climate change conditions, in contrast to the recent conditions.


Sign in / Sign up

Export Citation Format

Share Document