scholarly journals Real-time Projection Method for Augmented Reality Assisted Assembly

2018 ◽  
Vol 175 ◽  
pp. 02026
Author(s):  
Guo Hong-jie ◽  
Du Fu-zhou

Recently, the augmented reality technology has become a useful tool for assembly guidance. The projectors have been always used as virtual image output devices. In most situations, real-time and dynamic images projection is essential due to that the components to be assembled are randomly placed and movable. However, the cameras and the projectors are placed in different relative positions, making it difficult to project real time images when we are using augmented reality for assembly. A novel method based on the system of binocular cameras and projector was proposed here to overcome the limitation. We established a method to get the relations of coordinate transform among camera coordinate system, projector coordinate system and world coordinate system based on real-time internal parameter matrix of the projector that we derived. Obtaining the pose information of the cameras without any designed markers in real world was also realized, which is the key technology for the camera-projector assembly visualization system. An assembly experiment of cable laying was conducted and the results showed that using the proposed method the real-time projection for augmented reality assisted assembly was realized.

Author(s):  
Yulia Fatma ◽  
Armen Salim ◽  
Regiolina Hayami

Along with the development, the application can be used as a medium for learning. Augmented Reality is a technology that combines two-dimensional’s virtual objects and three-dimensional’s virtual objects into a real three-dimensional’s  then projecting the virtual objects in real time and simultaneously. The introduction of Solar System’s material, students are invited to get to know the planets which are directly encourage students to imagine circumtances in the Solar System. Explenational of planets form and how the planets make the revolution and rotation in books are considered less material’s explanation because its only display objects in 2D. In addition, students can not practice directly in preparing the layout of the planets in the Solar System. By applying Augmented Reality Technology, information’s learning delivery can be clarified, because in these applications are combined the real world and the virtual world. Not only display the material, the application also display images of planets in 3D animation’s objects with audio.


Author(s):  
Kevin Lesniak ◽  
Conrad S. Tucker

The method presented in this work reduces the frequency of virtual objects incorrectly occluding real-world objects in Augmented Reality (AR) applications. Current AR rendering methods cannot properly represent occlusion between real and virtual objects because the objects are not represented in a common coordinate system. These occlusion errors can lead users to have an incorrect perception of the environment around them when using an AR application, namely not knowing a real-world object is present due to a virtual object incorrectly occluding it and incorrect perception of depth or distance by the user due to incorrect occlusions. The authors of this paper present a method that brings both real-world and virtual objects into a common coordinate system so that distant virtual objects do not obscure nearby real-world objects in an AR application. This method captures and processes RGB-D data in real-time, allowing the method to be used in a variety of environments and scenarios. A case study shows the effectiveness and usability of the proposed method to correctly occlude real-world and virtual objects and provide a more realistic representation of the combined real and virtual environments in an AR application. The results of the case study show that the proposed method can detect at least 20 real-world objects with potential to be incorrectly occluded while processing and fixing occlusion errors at least 5 times per second.


2018 ◽  
Vol 142 (5) ◽  
pp. 638-644 ◽  
Author(s):  
Matthew G. Hanna ◽  
Ishtiaque Ahmed ◽  
Jeffrey Nine ◽  
Shyam Prajapati ◽  
Liron Pantanowitz

Context Augmented reality (AR) devices such as the Microsoft HoloLens have not been well used in the medical field. Objective To test the HoloLens for clinical and nonclinical applications in pathology. Design A Microsoft HoloLens was tested for virtual annotation during autopsy, viewing 3D gross and microscopic pathology specimens, navigating whole slide images, telepathology, as well as real-time pathology-radiology correlation. Results Pathology residents performing an autopsy wearing the HoloLens were remotely instructed with real-time diagrams, annotations, and voice instruction. 3D-scanned gross pathology specimens could be viewed as holograms and easily manipulated. Telepathology was supported during gross examination and at the time of intraoperative consultation, allowing users to remotely access a pathologist for guidance and to virtually annotate areas of interest on specimens in real-time. The HoloLens permitted radiographs to be coregistered on gross specimens and thereby enhanced locating important pathologic findings. The HoloLens also allowed easy viewing and navigation of whole slide images, using an AR workstation, including multiple coregistered tissue sections facilitating volumetric pathology evaluation. Conclusions The HoloLens is a novel AR tool with multiple clinical and nonclinical applications in pathology. The device was comfortable to wear, easy to use, provided sufficient computing power, and supported high-resolution imaging. It was useful for autopsy, gross and microscopic examination, and ideally suited for digital pathology. Unique applications include remote supervision and annotation, 3D image viewing and manipulation, telepathology in a mixed-reality environment, and real-time pathology-radiology correlation.


Symmetry ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Jaewoon Lee ◽  
Yeonjin Kim ◽  
Myeong-Hyeon Heo ◽  
Dongho Kim ◽  
Byeong-Seok Shin

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Kuei-Shu Hsu ◽  
Chia-Sui Wang ◽  
Jinn-Feng Jiang ◽  
Hung-Yuan Wei

Augmented reality technology is applied so that driving tests may be performed in various environments using a virtual reality scenario with the ultimate goal of improving visual and interactive effects of simulated drivers. Environmental conditions simulating a real scenario are created using an augmented reality structure, which guarantees the test taker’s security since they are not subject to real-life elements and dangers. Furthermore, the accuracy of tests conducted through virtual reality is not influenced by either environmental or human factors. Driver posture is captured in real time using Kinect’s depth perception function and then applied to driving simulation effects that are emulated by Unity3D’s gaming technology. Subsequently, different driving models may be collected through different drivers. In this research, nearly true and realistic street environments are simulated to evaluate driver behavior. A variety of different visual effects are easily available to effectively reduce error rates, thereby significantly improving test security as well as the reliability and reality of this project. Different situation designs are simulated and evaluated to increase development efficiency and build more security verification test platforms using such technology in conjunction with driving tests, vehicle fittings, environmental factors, and so forth.


2013 ◽  
Vol 405-408 ◽  
pp. 3419-3422 ◽  
Author(s):  
Che Mohd Lukman Khalid ◽  
Zainai Mohamed ◽  
Mohamad Syazli Fathi ◽  
Mohd Zulakhmar Zakiyudin ◽  
Norshakila Rawai ◽  
...  

Construction project management covering various aspects such as planning, coordinating, directing, scheduling, monitoring and control. Pre-construction services are used in planning a construction project before the actual construction begins. However, various problems happened at the pre-construction planning stage. This paper present an overview of the major problems in pre-construction stage and look at the potential of using augmented reality technology to overcome those problems. It was found that, at the pre-construction stage, good planning can not be done by the project teams especially to engineers and contractors due to the lack of supporting data, particularly when it involves information relating to underground utilities such as telecommunications, gas, electricity, water and sewerage. There are several approaches that can been undertaken in pre-construction services, especially in making an informed decision. The potential technology is using Augmented Reality (AR)-based approach in pre-construction service. Augmented reality is the integration of digital information with the users environment in real-time. It was one of the tool that support the concept of cyber-physical systems (CPS). CPS is the integration systems between computational network and physical processes. Currently, there are many fields utilised the application of AR such as medical, militiry, vehicles, gaming and navigation. This paper presents the applications of an AR-based approach to medical and gaming industry and explore the potential of using AR in pre-construction. The finding shows that the AR is a potential decision support tool that will speed up the planning process of the project team in the pre-construction phase in real-time.


2020 ◽  
Vol 10 (11) ◽  
pp. 316
Author(s):  
Muhammad Nadeem ◽  
Amal Chandra ◽  
Audrey Livirya ◽  
Svetlana Beryozkina

Lab orientation is a vital part of learning for new students entering the university, as it provides the students with all the necessary and important information about the lab. The current orientation is manual, tedious, suffers from logistical constraints, lacks engagement, and provides no way to assess that outcomes have been achieved. This is also supported by the results of a student survey which revealed students’ dissatisfaction with current process of orientation. This study presents the design and development of a sample augmented reality mobile application, AR-LabOr, for the lab orientation that helps students in a quick and easy adaptation to the lab environment by familiarizing them with the lab equipment, staff, and safety rules in a fun and interactive manner. This application makes use of marker-less augmented reality technology and a blend of multimedia information such as sound, text, images, and videos that are superimposed on real-world contents. An experiment with 56 students showed that they found the novel method of orientation using the application more engaging than the traditional instructor-led method. Students also found the application to be more supportive, motivating, and that it helped them in better understanding the lab equipment.


Sign in / Sign up

Export Citation Format

Share Document