scholarly journals Application of microtremor HVSR method for preliminary assessment of seismic site effect in Ngipik landfill, Gresik

2018 ◽  
Vol 195 ◽  
pp. 03017
Author(s):  
Siti Nurlita Fitri ◽  
Ria Asih Aryani Soemitro ◽  
Dwa Dewa Warnana ◽  
Nila Sutra

This paper presents an investigation based on affected areas of earthquakes based on the micro-tremor horizontal-to-vertical ratio (HVSR) method around the Ngipik Landfill, Gresik. Ngipik landfill applies an Open dumping system with no protective layer to prevent groundwater pollution. Hence, the effect of the earthquake was investigated for preliminary assessment of leachate’s leakage. The micro-tremor measurements were performed by dividing the area into a grid with a 25m distance. The predominant frequency (f0) ranges between 1.1 and 3.65 Hz and the peak of HVSR (Am) varies from 2.04 to 7.16. The vulnerability index (kg) displayed the level of soil damage due to ground motions; the highest kg values signified the weaker zones during earthquakes and also indicated the leachate spread. The result of this paper might consider to seismic stability analysis of leachate recirculation landfill.

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Nyakno Jimmy George

AbstractAVI (Aquifer vulnerability index), GOD (groundwater occurrence, overlying lithology and depth to the aquifer), GLSI (geo-electric layer susceptibility indexing) and S (longitudinal unit conductance) models were used to assess economically exploitable groundwater resource in the coastal environment of Akwa Ibom State, southern Nigeria. The models were employed in order to delineate groundwater into its category of vulnerability to contamination sources using the first- and second-order geo-electric indices as well as hydrogeological inputs. Vertical electrical sounding technique employing Schlumberger electrode configuration was carried out in 16 locations, close to logged boreholes with known aquifer core samples. Primary or first-order geo-electric indices (resistivity, thickness and depth) measured were used to determine S. The estimated aquifer hydraulic conductivity, K, calculated from grain size diameter and water resistivity values were used to calculate hydraulic resistance (C) used to estimate AVI. With the indices assigned to geo-electric parameters on the basis of their influences, GOD and FSLI were calculated using appropriate equations. The geologic sequence in the study area consists of geo-electric layers ranging from motley topsoil, argillites (clayey to fine sands) and arenites (medium to gravelly sands). Geo-electric parametric indices of aquifer overlying layers across the survey area were utilized to weigh the vulnerability of the underlying water-bearing resource to the contaminations from surface and near-surface, using vulnerability maps created. Geo-electrically derived model maps reflecting AVI, BOD, FLSI and S were compared to assess their conformity to the degree of predictability of groundwater vulnerability. The AVI model map shows range of values of log C ( −3.46—0.07) generally less than unity and hence indicating high vulnerability. GOD model tomographic map displays a range of 0.1–0.3, indicating that the aquifer with depth range of 20.5 to 113.1 m or mean depth of 72. 3 m is lowly susceptible to surface and near-surface impurities. Again, the FLSI map displays a range of FLSI index of 1.25 to 2.75, alluding that the aquifer underlying the protective layer has a low to moderate vulnerability. The S model has values ranging from 0.013 to 0.991S. As the map indicates, a fractional portion of the aquifer at the western (Ikot Abasi) part of the study area has moderate to good protection (moderate vulnerability) while weak to poor aquifer protection (high vulnerability) has poor protection. The S model in this analysis seems to overstate the degree of susceptibility to contamination than the AVI, GOD and GLSI models. From the models, the categorization of severity of aquifer vulnerability to contaminations is relatively location-dependent and can be assessed through the model tomographic maps generated.


2015 ◽  
Vol 52 (12) ◽  
pp. 1930-1944 ◽  
Author(s):  
Behnam Ferdosi ◽  
Michael James ◽  
Michel Aubertin

Over the years, seismic activity has been a relatively common cause of tailings impoundment failure. The flow of liquefied tailings from such ruptures can result in very severe consequences, including loss of life and environmental damage. A co-disposal technique consisting of placing waste rock inclusions in tailings impoundments prior to and during tailings deposition was proposed by the authors. The waste rock is placed to create continuous inclusions within the impoundment, which provide a number of environmental and geotechnical benefits, particularly with respect to seismic stability. The results of numerical simulations previously performed have shown that the UBCSAND model can predict the seismic response of tailings. The UBCSAND constitutive model was used to conduct simulations to evaluate of the use of waste rock inclusions to improve the seismic stability of a tailings impoundment. The evaluation consists of numerical analyses of an actual tailings impoundment as constructed (without inclusions), and then assuming that it was constructed with inclusions, subjected to earthquake loads of various energy contents and with different predominant frequencies. The analyses were conducted in static, seismic, and post-shaking phases. The displacement of the surface of downstream slope of the tailings dyke was recorded during the analyses. The results indicate that the presence of waste rock inclusions can significantly improve the seismic behavior of the impoundment by reducing the displacements of the surface of the downstream slope and the extent of potential failure zones. Also, the results show that in most cases, the influence of a low-frequency earthquake on the displacement of the downstream slope of the tailings dyke is more important than that of a high-frequency earthquake. The performances of the tailings impoundment with different configurations of waste rock inclusions (varying width and center-to-center spacing) were classified based on the average normalized horizontal displacement of the downstream slope (ARx) for a range input ground motions. Charts were then developed to show how ARx is influenced by the total width of inclusions, their spacing, and the input ground motions.


2018 ◽  
Vol 15 (6) ◽  
pp. 1331-1341 ◽  
Author(s):  
Li-jun Su ◽  
Chang-ning Sun ◽  
Fang-wei Yu ◽  
Sarfraz Ali

Sign in / Sign up

Export Citation Format

Share Document