scholarly journals Performance analysis of the bump beams made of High Strength Steel and Carbon Fiber reinforce plastics

2018 ◽  
Vol 207 ◽  
pp. 03006
Author(s):  
Yi Yao ◽  
Quan Yuan ◽  
Sihuan Fu

Lightweight and safe are the key research directions of the automobile industry. Bump beam is an important part of the car safety protection and it’s lightweight design has drawn much attention. In this paper, the static strength and the low-speed impact performances of two types of bump beam with the same structure, which made of carbon fiber reinforced plastics (CFRP) and high strength steel (HSS), were investigated. Under the condition of static press, frontal and 40% offset impact, part structural stiffness, component crush intrusion, energy absorption were comparison analyzed. In order to guide the product design, the deformation and failure of CFRP beams with five different laminate structures were simulated under frontal and 40% offset impact. The results indicate that, with the same structure, the properties of CFRP bump beam are generally superior to HSS product, more conducive to lightweight and the optimum design of the laminate is [0° / 60° / 120°]

Author(s):  
Sung-Youl Bae ◽  
Yun-Hae Kim

The purpose of this study is to develop a lightweight design model for an 18ft leisure boat. The existing leisure boat is manufactured using glass fiber-reinforced plastics (GFRP) material and the hand lay-up process. Carbon fiber-reinforced plastics (CFRP) was applied to the new design to reduce the boat’s weight, while an automated tape laying machine was applied to the lightweight boat’s manufacturing process to increase boat manufacturing productivity. The newly designed CFRP model is 25% lighter than the existing GFRP model. It was confirmed that the newly designed lightweight hull has sufficient structural integrity compared to the existing hull through the structural integrity evaluation by the FEA.


2015 ◽  
Vol 651-653 ◽  
pp. 1493-1498 ◽  
Author(s):  
Dirk Landgrebe ◽  
Mathias Jäckel ◽  
Ronald Niegsch

The importance of environment friendly mobility strengthens the need of lightweight design in the automotive industry. New electric car models, like the BMW i3, already have car body with a high amount of carbon fiber reinforced plastics (CFRP) to allow, as a result of the low vehicle weight, appropriate ranges without reloading the battery. Methods for joining materials like CFRP play a key role to implement lightweight designs into car body production. Conventional joining methods like spot welding cannot be used for such material combinations. Due to the good automation and possible combination with adhesive, mechanical joining techniques such as self-pierce riveting (SPR) are very relevant for joining these lightweight materials. While generally self-pierce riveting of CFRP with aluminium is possible, different damages e.g. delaminations, fiber or matrix fractures in the CFRP can occur during the joining process and have to be considered. This paper shows an analysis of these process induced damages when self-pierce riveting CFRP compound with aluminum sheet metal and investigates their influence on the joint strength. In our research the conventional SPR process of CFRP-aluminium joints is compared to the application of a new die concept for SPR in which a separated die is used to reduce the process induced delaminations in the CFRP. Additionally, these joining results are contrasted to SPR joints with pre-drilled CFRP components. Through the pre-drilling the damages in the CFRP can nearly be avoided completely and so these joints can be used as a reference. The results of the three processes to produce CFRP-aluminum joints are compared by micrographs, computed tomography and strength tests.


Author(s):  
Adel Abidi ◽  
Sahbi Ben Salem ◽  
Mohamed Athmane Yallese

Among advanced cutting methods, High Speed Milling (HSM) is often recommended to improve the productivity and to reduce the costs of machining parts. As every cutting process, HSM is characterized by some defects like surface roughness and delamination are the main defects generated in composite materials. The aim of this experimental work is the studying of the machining quality of woven Carbon fiber reinforced plastics (CFRP) using the HSM technology. Experiments were done using different machining parameters combinations to make opened holes in CFRP laminates. This study investigated the effect of cutting speed, orbital feed speed, hole diameter on the delamination defect and surface roughness responses generated in the drilled holes. The design of experimental tests was generated using the approach of Central Composite Design (CCD). The characterization of these responses was treated with the Analysis of variance (ANOVA) and Response surface methodology (RSM). Results showed that the surface roughness is highly affected by the orbital feed speed (F) with contribution of 22.45%. The delamination factor at entry and exit of holes is strongly influenced by the hole diameter D (25.97% and 57.43%) respectively. The developed model equations gave a good correlation between the empirical and predicted results. The optimization of the milling parameters was treated using desirability function to minimize the surface roughness (Ra) and the delamination factor simultaneously.


2021 ◽  
pp. 28-37
Author(s):  
P. N. Shkatov ◽  
G. A. Didin ◽  
A. A. Ermolaev

The paper is concerned with increasing sensitivity of eddy current nondestructive testing of most dangerous delamination in carbon-fiber reinforced plastics (CFRP). Increased sensitivity is achieved by separate registration and comparison of eddy current signals obtained from a set of stratifications of carbon fibers with the same orientation. The separation of eddy current signals is possible due to pronounced anisotropy of the electrical conductivity of the layers dominant in the direction of the fibers of the corresponding layer. Eddy-current signals are registered by eddy current probes with maximum sensitivity in a given angular direction. Prior to the scan eddy current signals of the probe are leveled on a defect-free area. The influence of the working gap on the difference between the eddy current signals of the probe is suppressed by normalizing it according to one of the signals. The analysis of the registered signals from delamination has been performed using an approximate calculation model. The reliability of the obtained results has been confirmed by comparison with experimental results and calculations using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document