scholarly journals Flexural behaviour of ABS 3D printed parts on professional printer Stratasys Fortus 900mc

2018 ◽  
Vol 210 ◽  
pp. 04048 ◽  
Author(s):  
Pavel Stoklasek ◽  
Milan Navratil ◽  
Martin Bednarik ◽  
Ivan Hudec ◽  
Dalibor Petrzelka

Nowadays, it is very desirable to obtain the low cost polymeric material with the best material properties. For the best modification of the commodity and construction polymeric materials it is firstly necessary to know the basic material properties. In this study the bending and Charpy impact test specimens were fabricated via a professional FDM 3D printer Fortus 900mc, from company Stratasys, processing ABS-M30 in three build orientation XY, XZ-H and XZ-V. The 3D printed test specimens were examined to compare the effect of layer thickness and building orientation. Tensile test machine Zwick 1456 and impact pendulum Zwick HIT50P were used for bending and Charpy impact tests. Optical microscopy was utilized to perform fractography on impact test specimens to explore the effect of the layer thickness and building orientation on the fracture surface morphology of the failed specimens. This study demonstrates the need for material testing for specific processing as additive manufacturing technologies.

2018 ◽  
Vol 210 ◽  
pp. 04049 ◽  
Author(s):  
Ales Mizera ◽  
Martin Bednarik ◽  
Martin Mizera ◽  
Katarina Tomanova ◽  
Martin Mohorko

To obtain the deeper knowledge about the mechanical behaviour of 3D printed polymeric materials it is necessary to study the material properties from the beginning to the end. The commonly processed polymeric materials (via injection moulding etc.) are already deeply studied and evaluated, but 3D printed specimens in the various orientation build are not yet. In this study the tensile impact test specimens were fabricated via a desktop material extrusion 3D printer Zortrax M200 processing ABS and HIPS in build orientation XY. The 3D printed tensile impact test specimens were examined to compare the effect of layer thickness. Impact pendulum Zwick HIT50P was used for tensile impact tests according to ISO 8256 standard. Optical microscopy was utilized to perform fractography on impact test specimens to explore the effect of the layer thickness on the fracture surface morphology of the failed specimens. This study demonstrates the need for material testing for specific processing as additive manufacturing technologies.


2015 ◽  
Vol 808 ◽  
pp. 175-180
Author(s):  
Gergely Dezső ◽  
Ferenc Szigeti

In spite of its complexitiy and difficulties in measuring it, fracture can reveal a high amount of information on material structure and properties. Microstructure of additive manufactured parts is studied in this work. Standard impact test parts were manufactured on OBJET EDEN 350V machine in three different orientation, and they were broken by a Charpy impact test machine. Different surfaces of broken parts were studied with an electron microscope. High variety of structures were observed, and explained by technological aspects of manufacturing system, and material properties. It is shown, that material is surprisingly brittle. Microscopic study pointed out that microstructure is definitely anisotropic.


Author(s):  
Olaf Diegel ◽  
Andrew Withell ◽  
Deon Debeer ◽  
Mark Wu

This paper describes research in adapting 3D printers to operate with low-cost ceramic materials. The components produced with these clay-based ceramic powders can be fired to produce strong, complex and lightweight ceramic parts. The final material properties, including the porosity of the parts, can be controlled through the part design and, potentially, through additives to the material that burn out during firing. The paper begins with a brief description of the 3D printing process and how it can be used with clay powders. It then introduces a factorial design experiment initiated to explore the effect of ingredient and parameter variations on the dimensional stability and material properties of green and fired ceramic parts. It then presents a case study in which 3D printed ceramic parts are used in the humidification system for an infant incubator for developing countries.


2021 ◽  
Author(s):  
Kaiwen Sun ◽  
Fangyang Liu ◽  
Xiaojing Hao

Kesterite Cu2ZnSnS4-xSex (CZTS) is a promising thin film photovoltaic (PV) material with low cost and nontoxic constitute as well as decent PV properties, being regarded as a PV technology that is truly compatible with terawatt deployment. The kesterite CZTS thin film solar cell has experienced impressive development since its first report in 1996 with power conversion efficiencies (PCEs) of only 0.66% to current highest value of 13.0%, while the understanding of the material, device physics, and loss mechanism is increasingly demanded. This chapter will review the development history of kesterite technology, present the basic material properties, and summarize the loss mechanism and strategies to tackle these problems to date. This chapter will help researchers have brief background knowledge of kesterite CZTS technology and understand the future direction to further propel this new technology forward.


2014 ◽  
Vol 224 ◽  
pp. 244-248
Author(s):  
Michał Stopel ◽  
Michał Burak ◽  
Dariusz Skibicki

The hereby paper presents comparison of numerically modelled Charpy test in LS-Dyna environment with an experiment on accredited Charpy impact test machine. The comparison was applied to dimensions of a strained sample at selected points and energy consumed for the sample fracture and strains during the test.


2016 ◽  
Vol 693 ◽  
pp. 453-457
Author(s):  
Xin Luo

Charpy impact test is very sensitive to mechanical processing technologies and product defects. Charpy impact test can give quantitative test data and improve the product quality of advanced manufacturing industry and the safety of the application of new materials. The Charpy impact test machine has elastic deformation. The center of percussion is different from the designed center of strike and this difference can affect the vibration energy on the pendulum. In this article, by using the finite element analysis method, we simulate experimental processes having different distance to the center of percussion and obtain the numerical quantity related effects. In the end, we verify the accuracy of the finite element analysis by using different energy level impact test.


2013 ◽  
Vol 816-817 ◽  
pp. 13-17
Author(s):  
Lydia Sobotova ◽  
Miroslav Badida ◽  
Ľudmila Dulebová ◽  
Zdenka Dzoganova

Concerning with an actual situation in the exploitation of technological waste, this contribution deals with the properties analysis of moulded parts made of thermoplastics containing added regrind. The aim of the experiments was to analyze mechanical properties of plastics with various percentage of added regrind into basic material. Material PBT (polybutylene terephthalate), mineral composite with 30% glass fiber, was used for experimental testing. The plastics specimens were made by injection moulding and tested by chosen mechanical properties. The yield of tested material had tendency to decline with added amount of regrind. Addition of regrind had no impact on change of tensile strength and hardness of tested materials with regrind. The values of Charpy impact test had decreasing tendency with increasing rate of regrind. The utilization of regrind at the production of new moulded parts is important from aspect of reduction plastics waste and pollution abatement of environment.


Sign in / Sign up

Export Citation Format

Share Document