scholarly journals Hybrid power source based on heat and wind power plants

2018 ◽  
Vol 212 ◽  
pp. 02002
Author(s):  
Stennikov Valery ◽  
Penkovsky Andrey ◽  
Postnikov Ivan

The technology of use of electric power of the wind power plants for direct replacement of fuel in the thermal cycles of the heat power plants is offered in the paper. The technology avoids solving the problems of ensuring the quality of electricity and the operational redundancy of the wind power in the power systems, as well as permits combining the achievements of traditional (gas turbine and steam and gas technologies, combined-cycle technologies and heating) and non-traditional renewable energy. The energy and environmental effects from the application of the proposed technology are shown, the technological advantages of the proposed schemes are considered, providing them with a wide scope of practical use both in local and in large power systems. The implementation and development of the proposed technology will allow extending and expanding business for manufacturers of steam turbine and gas turbine equipment, including the transition to the hydrogen power. The proposed technologies are protected by the patent.

2014 ◽  
Vol 651-653 ◽  
pp. 1117-1122
Author(s):  
Zheng Ning Fu ◽  
Hong Wen Xie

Wind speed forecasting plays a significant role to the operation of wind power plants and power systems. An accurate forecasting on wind power can effectively relieve or avoid the negative impact of wind power plants on power systems and enhance the competition of wind power plants in electric power market. Based on a fuzzy neural network (FNN), a method of wind speed forecasting is presented in this paper. By mining historical data as the learning stylebook, the fuzzy neural network (FNN) forecasts the wind speed. The simulation results show that this method can improve the accuracy of wind speed forecasting effectively.


Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


Author(s):  
Dale Grace ◽  
Thomas Christiansen

Unexpected outages and maintenance costs reduce plant availability and can consume significant resources to restore the unit to service. Although companies may have the means to estimate cash flow requirements for scheduled maintenance and on-going operations, estimates for unplanned maintenance and its impact on revenue are more difficult to quantify, and a large fleet is needed for accurate assessment of its variability. This paper describes a study that surveyed 388 combined-cycle plants based on 164 D/E-class and 224 F-class gas turbines, for the time period of 1995 to 2009. Strategic Power Systems, Inc. (SPS®), manager of the Operational Reliability Analysis Program (ORAP®), identified the causes and durations of forced outages and unscheduled maintenance and established overall reliability and availability profiles for each class of plant in 3 five-year time periods. This study of over 3,000 unit-years of data from 50 Hz and 60 Hz combined-cycle plants provides insight into the types of events having the largest impact on unplanned outage time and cost, as well as the risks of lost revenue and unplanned maintenance costs which affect plant profitability. Outage events were assigned to one of three subsystems: the gas turbine equipment, heat recovery steam generator (HRSG) equipment, or steam turbine equipment, according to the Electric Power Research Institute’s Equipment Breakdown Structure (EBS). Costs to restore the unit to service for each main outage cause were estimated, as were net revenues lost due to unplanned outages. A statistical approach to estimated costs and lost revenues provides a risk-based means to quantify the impact of unplanned events on plant cash flow as a function of class of gas turbine, plant subsystem, and historical timeframe. This statistical estimate of the costs of unplanned outage events provides the risk-based assessment needed to define the range of probable costs of unplanned events. Results presented in this paper demonstrate that non-fuel operation and maintenance costs are increased by roughly 8% in a typical combined-cycle power plant due to unplanned maintenance events, but that a wide range of costs can occur in any single year.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


Author(s):  
Hossein Ghezel-Ayagh ◽  
Joseph M. Daly ◽  
Zhao-Hui Wang

This paper summarizes the recent progress in the development of hybrid power systems based on Direct FuelCell/Turbine® (DFC/T®). The DFC/T system is capable of achieving efficiencies well in excess of state-of-the-art gas turbine combined cycle power plants but in much smaller size plants. The advances include the execution of proof-of-concept tests of a fuel cell stack integrated with a microturbine. The DFC/T design concept has also been extended to include the existing gas turbine technologies as well as more advanced ones. This paper presents the results of successful sub-MW proof-of-concept testing, sub-MW field demonstration plans, and parametric analysis of multi-MW DFC/T power plant cycle.


Author(s):  
Hyun Min Kwon ◽  
Jeong Ho Kim ◽  
Tong Seop Kim

The gas turbine combined cycle is the most mature and efficient power generation system. While enhancing design performance continuously, a parallel effort to make up for the shortcomings of the gas turbine should be pursued. The most critical drawback is the large power loss in hot season when electricity demand is usually the highest. Therefore, it is important to implement an effective power boosting measure in gas turbine based power plants, especially in areas where the annual average temperature is much higher than the standard design ambient temperature. The simplest method in general is to reduce the gas turbine inlet air temperature by any means. Several schemes are commercially available, such as mechanical chilling, evaporative cooling, inlet fogging and absorption chilling. All of them have merits and demerits, either thermodynamically and economically. In this study, we focused our interest on the absorption chilling method. Theoretically, absorption chilling provides as much cooling effect (air temperature reduction) as the mechanical chilling, while electric power consumption is negligibly small. A distinct feature of an absorption chiller in contrast to a mechanical chiller is that thermal energy (heat) is needed to drive the chilling system. In this research, we propose an innovative idea of making the independent heat supply unnecessary. The new method provides simultaneous cooling of the turbine coolant and the inlet air using an absorption chiller. The inlet cooling and coolant precooling boost the gas turbine power synergistically. We predicted the system performance using cycle simulation and compared it with that of the conventional mechanical cooling system.


Sign in / Sign up

Export Citation Format

Share Document